---
license: wtfpl
datasets:
- cakiki/rosetta-code
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-classification
tags:
- code
- programming-language
- code-classification
base_model: huggingface/CodeBERTa-small-v1
---
This Model is a fine-tuned version of *huggingface/CodeBERTa-small-v1* on *cakiki/rosetta-code* Dataset for 26 Programming Languages as mentioned below.
## Training Details:
Model is trained for 25 epochs on Azure for nearly 26000 Datapoints for above Mentioned 26 Programming Languages
extracted from Dataset having 1006 of total Programming Language.
### Programming Languages this model is able to detect vs Examples used for training
- 'ARM Assembly':
- 'AppleScript'
- 'C'
- 'C#'
- 'C++'
- 'COBOL'
- 'Erlang'
- 'Fortran'
- 'Go'
- 'Java'
- 'JavaScript'
- 'Kotlin'
- 'Lua
- 'Mathematica/Wolfram Language'
- 'PHP'
- 'Pascal'
- 'Perl'
- 'PowerShell'
- 'Python'
- 'R
- 'Ruby'
- 'Rust'
- 'Scala'
- 'Swift'
- 'Visual Basic .NET'
- 'jq'
## Below is the Training Result for 25 epochs.
- Training Computer Configuration:
- GPU:1xNvidia Tesla T4,
- VRam: 16GB,
- Ram:112GB,
- Cores:6 Cores
- Training Time taken: exactly 7 hours for 25 epochs
- Training Hyper-parameters:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/645c859ad90782b1a6a3e957/YIYl1XZk0zpi3DCvn3D80.png)
![training detail.png](https://cdn-uploads.huggingface.co/production/uploads/645c859ad90782b1a6a3e957/Oi9TuJ8nEjtt6Z_W56myn.png)
## Inference Code
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
model_name = 'philomath-1209/programming-language-identification'
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
text = """
PROGRAM Triangle
IMPLICIT NONE
REAL :: a, b, c, Area
PRINT *, 'Welcome, please enter the&
&lengths of the 3 sides.'
READ *, a, b, c
PRINT *, 'Triangle''s area: ', Area(a,b,c)
END PROGRAM Triangle
FUNCTION Area(x,y,z)
IMPLICIT NONE
REAL :: Area ! function type
REAL, INTENT( IN ) :: x, y, z
REAL :: theta, height
theta = ACOS((x**2+y**2-z**2)/(2.0*x*y))
height = x*SIN(theta); Area = 0.5*y*height
END FUNCTION Area
"""
inputs = loaded_tokenizer(text, return_tensors="pt",truncation=True)
with torch.no_grad():
logits = loaded_model(**inputs).logits
predicted_class_id = logits.argmax().item()
loaded_model.config.id2label[predicted_class_id]
```