pepperjirakit commited on
Commit
5194b04
1 Parent(s): 25f35e0

Update requirements.txt

Browse files
Files changed (1) hide show
  1. requirements.txt +4 -36
requirements.txt CHANGED
@@ -1,36 +1,4 @@
1
- import joblib import pandas as pd import streamlit as st
2
-
3
- model = joblib.load("daimondx.joblib") unique_values = joblib.load("unique_values (1).joblib")
4
-
5
- unique_cut = unique_values["cut"] unique_color = unique_values["color"] unique_clarity = unique_values["clarity"]
6
-
7
- def main(): st.title("Diamond Prices")
8
-
9
- with st.form("questionaire"):
10
- carat = st.slider("Carat",min_value=0.00,max_value=5.00)
11
- cut = st.selectbox("Cut", options=unique_cut)
12
- color = st.selectbox("Color", options=unique_color)
13
- clarity = st.selectbox("Clarity", options=unique_clarity)
14
- depth = st.slider("Depth",min_value=0.00,max_value=100.00)
15
- table = st.slider("table",min_value=0.00,max_value=100.00)
16
- x = st.slider("length(mm)",min_value=0.01,max_value=10.00)
17
- y = st.slider("width(mm)",min_value=0.01,max_value=10.00)
18
- z = st.slider("depth(mm)",min_value=0.01,max_value=10.00)
19
-
20
-
21
- # clicked==True only when the button is clicked
22
- clicked = st.form_submit_button("Predict Price")
23
- if clicked:
24
- result=model.predict(pd.DataFrame({"carat": [carat],
25
- "cut": [cut],
26
- "color": [color],
27
- "clarity": [clarity],
28
- "depth":[depth],
29
- "table": [table],
30
- "size": [size],
31
- "length(mm)":[x],
32
- "width(mm)":[y],
33
- "depth(mm)":[z]}))
34
- # Show prediction
35
- st.success("Your predicted income is"+result)
36
- if name == "main": main()
 
1
+ joblib
2
+ sklearn
3
+ pandas
4
+ xgboost