Delete mel_band_roformer.py
Browse files- mel_band_roformer.py +0 -637
mel_band_roformer.py
DELETED
@@ -1,637 +0,0 @@
|
|
1 |
-
from functools import partial
|
2 |
-
|
3 |
-
import torch
|
4 |
-
from torch import nn, einsum, Tensor
|
5 |
-
from torch.nn import Module, ModuleList
|
6 |
-
import torch.nn.functional as F
|
7 |
-
|
8 |
-
from models.bs_roformer.attend import Attend
|
9 |
-
|
10 |
-
from beartype.typing import Tuple, Optional, List, Callable
|
11 |
-
from beartype import beartype
|
12 |
-
|
13 |
-
from rotary_embedding_torch import RotaryEmbedding
|
14 |
-
|
15 |
-
from einops import rearrange, pack, unpack, reduce, repeat
|
16 |
-
from einops.layers.torch import Rearrange
|
17 |
-
|
18 |
-
from librosa import filters
|
19 |
-
|
20 |
-
|
21 |
-
# helper functions
|
22 |
-
|
23 |
-
def exists(val):
|
24 |
-
return val is not None
|
25 |
-
|
26 |
-
|
27 |
-
def default(v, d):
|
28 |
-
return v if exists(v) else d
|
29 |
-
|
30 |
-
|
31 |
-
def pack_one(t, pattern):
|
32 |
-
return pack([t], pattern)
|
33 |
-
|
34 |
-
|
35 |
-
def unpack_one(t, ps, pattern):
|
36 |
-
return unpack(t, ps, pattern)[0]
|
37 |
-
|
38 |
-
|
39 |
-
def pad_at_dim(t, pad, dim=-1, value=0.):
|
40 |
-
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
41 |
-
zeros = ((0, 0) * dims_from_right)
|
42 |
-
return F.pad(t, (*zeros, *pad), value=value)
|
43 |
-
|
44 |
-
|
45 |
-
def l2norm(t):
|
46 |
-
return F.normalize(t, dim=-1, p=2)
|
47 |
-
|
48 |
-
|
49 |
-
# norm
|
50 |
-
|
51 |
-
class RMSNorm(Module):
|
52 |
-
def __init__(self, dim):
|
53 |
-
super().__init__()
|
54 |
-
self.scale = dim ** 0.5
|
55 |
-
self.gamma = nn.Parameter(torch.ones(dim))
|
56 |
-
|
57 |
-
def forward(self, x):
|
58 |
-
return F.normalize(x, dim=-1) * self.scale * self.gamma
|
59 |
-
|
60 |
-
|
61 |
-
# attention
|
62 |
-
|
63 |
-
class FeedForward(Module):
|
64 |
-
def __init__(
|
65 |
-
self,
|
66 |
-
dim,
|
67 |
-
mult=4,
|
68 |
-
dropout=0.
|
69 |
-
):
|
70 |
-
super().__init__()
|
71 |
-
dim_inner = int(dim * mult)
|
72 |
-
self.net = nn.Sequential(
|
73 |
-
RMSNorm(dim),
|
74 |
-
nn.Linear(dim, dim_inner),
|
75 |
-
nn.GELU(),
|
76 |
-
nn.Dropout(dropout),
|
77 |
-
nn.Linear(dim_inner, dim),
|
78 |
-
nn.Dropout(dropout)
|
79 |
-
)
|
80 |
-
|
81 |
-
def forward(self, x):
|
82 |
-
return self.net(x)
|
83 |
-
|
84 |
-
|
85 |
-
class Attention(Module):
|
86 |
-
def __init__(
|
87 |
-
self,
|
88 |
-
dim,
|
89 |
-
heads=8,
|
90 |
-
dim_head=64,
|
91 |
-
dropout=0.,
|
92 |
-
rotary_embed=None,
|
93 |
-
flash=True
|
94 |
-
):
|
95 |
-
super().__init__()
|
96 |
-
self.heads = heads
|
97 |
-
self.scale = dim_head ** -0.5
|
98 |
-
dim_inner = heads * dim_head
|
99 |
-
|
100 |
-
self.rotary_embed = rotary_embed
|
101 |
-
|
102 |
-
self.attend = Attend(flash=flash, dropout=dropout)
|
103 |
-
|
104 |
-
self.norm = RMSNorm(dim)
|
105 |
-
self.to_qkv = nn.Linear(dim, dim_inner * 3, bias=False)
|
106 |
-
|
107 |
-
self.to_gates = nn.Linear(dim, heads)
|
108 |
-
|
109 |
-
self.to_out = nn.Sequential(
|
110 |
-
nn.Linear(dim_inner, dim, bias=False),
|
111 |
-
nn.Dropout(dropout)
|
112 |
-
)
|
113 |
-
|
114 |
-
def forward(self, x):
|
115 |
-
x = self.norm(x)
|
116 |
-
|
117 |
-
q, k, v = rearrange(self.to_qkv(x), 'b n (qkv h d) -> qkv b h n d', qkv=3, h=self.heads)
|
118 |
-
|
119 |
-
if exists(self.rotary_embed):
|
120 |
-
q = self.rotary_embed.rotate_queries_or_keys(q)
|
121 |
-
k = self.rotary_embed.rotate_queries_or_keys(k)
|
122 |
-
|
123 |
-
out = self.attend(q, k, v)
|
124 |
-
|
125 |
-
gates = self.to_gates(x)
|
126 |
-
out = out * rearrange(gates, 'b n h -> b h n 1').sigmoid()
|
127 |
-
|
128 |
-
out = rearrange(out, 'b h n d -> b n (h d)')
|
129 |
-
return self.to_out(out)
|
130 |
-
|
131 |
-
|
132 |
-
class LinearAttention(Module):
|
133 |
-
"""
|
134 |
-
this flavor of linear attention proposed in https://arxiv.org/abs/2106.09681 by El-Nouby et al.
|
135 |
-
"""
|
136 |
-
|
137 |
-
@beartype
|
138 |
-
def __init__(
|
139 |
-
self,
|
140 |
-
*,
|
141 |
-
dim,
|
142 |
-
dim_head=32,
|
143 |
-
heads=8,
|
144 |
-
scale=8,
|
145 |
-
flash=False,
|
146 |
-
dropout=0.
|
147 |
-
):
|
148 |
-
super().__init__()
|
149 |
-
dim_inner = dim_head * heads
|
150 |
-
self.norm = RMSNorm(dim)
|
151 |
-
|
152 |
-
self.to_qkv = nn.Sequential(
|
153 |
-
nn.Linear(dim, dim_inner * 3, bias=False),
|
154 |
-
Rearrange('b n (qkv h d) -> qkv b h d n', qkv=3, h=heads)
|
155 |
-
)
|
156 |
-
|
157 |
-
self.temperature = nn.Parameter(torch.ones(heads, 1, 1))
|
158 |
-
|
159 |
-
self.attend = Attend(
|
160 |
-
scale=scale,
|
161 |
-
dropout=dropout,
|
162 |
-
flash=flash
|
163 |
-
)
|
164 |
-
|
165 |
-
self.to_out = nn.Sequential(
|
166 |
-
Rearrange('b h d n -> b n (h d)'),
|
167 |
-
nn.Linear(dim_inner, dim, bias=False)
|
168 |
-
)
|
169 |
-
|
170 |
-
def forward(
|
171 |
-
self,
|
172 |
-
x
|
173 |
-
):
|
174 |
-
x = self.norm(x)
|
175 |
-
|
176 |
-
q, k, v = self.to_qkv(x)
|
177 |
-
|
178 |
-
q, k = map(l2norm, (q, k))
|
179 |
-
q = q * self.temperature.exp()
|
180 |
-
|
181 |
-
out = self.attend(q, k, v)
|
182 |
-
|
183 |
-
return self.to_out(out)
|
184 |
-
|
185 |
-
|
186 |
-
class Transformer(Module):
|
187 |
-
def __init__(
|
188 |
-
self,
|
189 |
-
*,
|
190 |
-
dim,
|
191 |
-
depth,
|
192 |
-
dim_head=64,
|
193 |
-
heads=8,
|
194 |
-
attn_dropout=0.,
|
195 |
-
ff_dropout=0.,
|
196 |
-
ff_mult=4,
|
197 |
-
norm_output=True,
|
198 |
-
rotary_embed=None,
|
199 |
-
flash_attn=True,
|
200 |
-
linear_attn=False
|
201 |
-
):
|
202 |
-
super().__init__()
|
203 |
-
self.layers = ModuleList([])
|
204 |
-
|
205 |
-
for _ in range(depth):
|
206 |
-
if linear_attn:
|
207 |
-
attn = LinearAttention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout, flash=flash_attn)
|
208 |
-
else:
|
209 |
-
attn = Attention(dim=dim, dim_head=dim_head, heads=heads, dropout=attn_dropout,
|
210 |
-
rotary_embed=rotary_embed, flash=flash_attn)
|
211 |
-
|
212 |
-
self.layers.append(ModuleList([
|
213 |
-
attn,
|
214 |
-
FeedForward(dim=dim, mult=ff_mult, dropout=ff_dropout)
|
215 |
-
]))
|
216 |
-
|
217 |
-
self.norm = RMSNorm(dim) if norm_output else nn.Identity()
|
218 |
-
|
219 |
-
def forward(self, x):
|
220 |
-
|
221 |
-
for attn, ff in self.layers:
|
222 |
-
x = attn(x) + x
|
223 |
-
x = ff(x) + x
|
224 |
-
|
225 |
-
return self.norm(x)
|
226 |
-
|
227 |
-
|
228 |
-
# bandsplit module
|
229 |
-
|
230 |
-
class BandSplit(Module):
|
231 |
-
@beartype
|
232 |
-
def __init__(
|
233 |
-
self,
|
234 |
-
dim,
|
235 |
-
dim_inputs: Tuple[int, ...]
|
236 |
-
):
|
237 |
-
super().__init__()
|
238 |
-
self.dim_inputs = dim_inputs
|
239 |
-
self.to_features = ModuleList([])
|
240 |
-
|
241 |
-
for dim_in in dim_inputs:
|
242 |
-
net = nn.Sequential(
|
243 |
-
RMSNorm(dim_in),
|
244 |
-
nn.Linear(dim_in, dim)
|
245 |
-
)
|
246 |
-
|
247 |
-
self.to_features.append(net)
|
248 |
-
|
249 |
-
def forward(self, x):
|
250 |
-
x = x.split(self.dim_inputs, dim=-1)
|
251 |
-
|
252 |
-
outs = []
|
253 |
-
for split_input, to_feature in zip(x, self.to_features):
|
254 |
-
split_output = to_feature(split_input)
|
255 |
-
outs.append(split_output)
|
256 |
-
|
257 |
-
return torch.stack(outs, dim=-2)
|
258 |
-
|
259 |
-
|
260 |
-
def MLP(
|
261 |
-
dim_in,
|
262 |
-
dim_out,
|
263 |
-
dim_hidden=None,
|
264 |
-
depth=1,
|
265 |
-
activation=nn.Tanh
|
266 |
-
):
|
267 |
-
dim_hidden = default(dim_hidden, dim_in)
|
268 |
-
|
269 |
-
net = []
|
270 |
-
dims = (dim_in, *((dim_hidden,) * depth), dim_out)
|
271 |
-
|
272 |
-
for ind, (layer_dim_in, layer_dim_out) in enumerate(zip(dims[:-1], dims[1:])):
|
273 |
-
is_last = ind == (len(dims) - 2)
|
274 |
-
|
275 |
-
net.append(nn.Linear(layer_dim_in, layer_dim_out))
|
276 |
-
|
277 |
-
if is_last:
|
278 |
-
continue
|
279 |
-
|
280 |
-
net.append(activation())
|
281 |
-
|
282 |
-
return nn.Sequential(*net)
|
283 |
-
|
284 |
-
|
285 |
-
class MaskEstimator(Module):
|
286 |
-
@beartype
|
287 |
-
def __init__(
|
288 |
-
self,
|
289 |
-
dim,
|
290 |
-
dim_inputs: Tuple[int, ...],
|
291 |
-
depth,
|
292 |
-
mlp_expansion_factor=1
|
293 |
-
):
|
294 |
-
super().__init__()
|
295 |
-
self.dim_inputs = dim_inputs
|
296 |
-
self.to_freqs = ModuleList([])
|
297 |
-
dim_hidden = dim * mlp_expansion_factor
|
298 |
-
|
299 |
-
for dim_in in dim_inputs:
|
300 |
-
net = []
|
301 |
-
|
302 |
-
mlp = nn.Sequential(
|
303 |
-
MLP(dim, dim_in * 2, dim_hidden=dim_hidden, depth=depth),
|
304 |
-
nn.GLU(dim=-1)
|
305 |
-
)
|
306 |
-
|
307 |
-
self.to_freqs.append(mlp)
|
308 |
-
|
309 |
-
def forward(self, x):
|
310 |
-
x = x.unbind(dim=-2)
|
311 |
-
|
312 |
-
outs = []
|
313 |
-
|
314 |
-
for band_features, mlp in zip(x, self.to_freqs):
|
315 |
-
freq_out = mlp(band_features)
|
316 |
-
outs.append(freq_out)
|
317 |
-
|
318 |
-
return torch.cat(outs, dim=-1)
|
319 |
-
|
320 |
-
|
321 |
-
# main class
|
322 |
-
|
323 |
-
class MelBandRoformer(Module):
|
324 |
-
|
325 |
-
@beartype
|
326 |
-
def __init__(
|
327 |
-
self,
|
328 |
-
dim,
|
329 |
-
*,
|
330 |
-
depth,
|
331 |
-
stereo=False,
|
332 |
-
num_stems=1,
|
333 |
-
time_transformer_depth=2,
|
334 |
-
freq_transformer_depth=2,
|
335 |
-
linear_transformer_depth=0,
|
336 |
-
num_bands=60,
|
337 |
-
dim_head=64,
|
338 |
-
heads=8,
|
339 |
-
attn_dropout=0.1,
|
340 |
-
ff_dropout=0.1,
|
341 |
-
flash_attn=True,
|
342 |
-
dim_freqs_in=1025,
|
343 |
-
sample_rate=44100, # needed for mel filter bank from librosa
|
344 |
-
stft_n_fft=2048,
|
345 |
-
stft_hop_length=512,
|
346 |
-
# 10ms at 44100Hz, from sections 4.1, 4.4 in the paper - @faroit recommends // 2 or // 4 for better reconstruction
|
347 |
-
stft_win_length=2048,
|
348 |
-
stft_normalized=False,
|
349 |
-
stft_window_fn: Optional[Callable] = None,
|
350 |
-
mask_estimator_depth=1,
|
351 |
-
multi_stft_resolution_loss_weight=1.,
|
352 |
-
multi_stft_resolutions_window_sizes: Tuple[int, ...] = (4096, 2048, 1024, 512, 256),
|
353 |
-
multi_stft_hop_size=147,
|
354 |
-
multi_stft_normalized=False,
|
355 |
-
multi_stft_window_fn: Callable = torch.hann_window,
|
356 |
-
match_input_audio_length=False, # if True, pad output tensor to match length of input tensor
|
357 |
-
):
|
358 |
-
super().__init__()
|
359 |
-
|
360 |
-
self.stereo = stereo
|
361 |
-
self.audio_channels = 2 if stereo else 1
|
362 |
-
self.num_stems = num_stems
|
363 |
-
|
364 |
-
self.layers = ModuleList([])
|
365 |
-
|
366 |
-
transformer_kwargs = dict(
|
367 |
-
dim=dim,
|
368 |
-
heads=heads,
|
369 |
-
dim_head=dim_head,
|
370 |
-
attn_dropout=attn_dropout,
|
371 |
-
ff_dropout=ff_dropout,
|
372 |
-
flash_attn=flash_attn
|
373 |
-
)
|
374 |
-
|
375 |
-
time_rotary_embed = RotaryEmbedding(dim=dim_head)
|
376 |
-
freq_rotary_embed = RotaryEmbedding(dim=dim_head)
|
377 |
-
|
378 |
-
for _ in range(depth):
|
379 |
-
tran_modules = []
|
380 |
-
if linear_transformer_depth > 0:
|
381 |
-
tran_modules.append(Transformer(depth=linear_transformer_depth, linear_attn=True, **transformer_kwargs))
|
382 |
-
tran_modules.append(
|
383 |
-
Transformer(depth=time_transformer_depth, rotary_embed=time_rotary_embed, **transformer_kwargs)
|
384 |
-
)
|
385 |
-
tran_modules.append(
|
386 |
-
Transformer(depth=freq_transformer_depth, rotary_embed=freq_rotary_embed, **transformer_kwargs)
|
387 |
-
)
|
388 |
-
self.layers.append(nn.ModuleList(tran_modules))
|
389 |
-
|
390 |
-
self.stft_window_fn = partial(default(stft_window_fn, torch.hann_window), stft_win_length)
|
391 |
-
|
392 |
-
self.stft_kwargs = dict(
|
393 |
-
n_fft=stft_n_fft,
|
394 |
-
hop_length=stft_hop_length,
|
395 |
-
win_length=stft_win_length,
|
396 |
-
normalized=stft_normalized
|
397 |
-
)
|
398 |
-
|
399 |
-
freqs = torch.stft(torch.randn(1, 4096), **self.stft_kwargs, window=torch.ones(stft_n_fft), return_complex=True).shape[1]
|
400 |
-
|
401 |
-
# create mel filter bank
|
402 |
-
# with librosa.filters.mel as in section 2 of paper
|
403 |
-
|
404 |
-
mel_filter_bank_numpy = filters.mel(sr=sample_rate, n_fft=stft_n_fft, n_mels=num_bands)
|
405 |
-
|
406 |
-
mel_filter_bank = torch.from_numpy(mel_filter_bank_numpy)
|
407 |
-
|
408 |
-
# for some reason, it doesn't include the first freq? just force a value for now
|
409 |
-
|
410 |
-
mel_filter_bank[0][0] = 1.
|
411 |
-
|
412 |
-
# In some systems/envs we get 0.0 instead of ~1.9e-18 in the last position,
|
413 |
-
# so let's force a positive value
|
414 |
-
|
415 |
-
mel_filter_bank[-1, -1] = 1.
|
416 |
-
|
417 |
-
# binary as in paper (then estimated masks are averaged for overlapping regions)
|
418 |
-
|
419 |
-
freqs_per_band = mel_filter_bank > 0
|
420 |
-
assert freqs_per_band.any(dim=0).all(), 'all frequencies need to be covered by all bands for now'
|
421 |
-
|
422 |
-
repeated_freq_indices = repeat(torch.arange(freqs), 'f -> b f', b=num_bands)
|
423 |
-
freq_indices = repeated_freq_indices[freqs_per_band]
|
424 |
-
|
425 |
-
if stereo:
|
426 |
-
freq_indices = repeat(freq_indices, 'f -> f s', s=2)
|
427 |
-
freq_indices = freq_indices * 2 + torch.arange(2)
|
428 |
-
freq_indices = rearrange(freq_indices, 'f s -> (f s)')
|
429 |
-
|
430 |
-
self.register_buffer('freq_indices', freq_indices, persistent=False)
|
431 |
-
self.register_buffer('freqs_per_band', freqs_per_band, persistent=False)
|
432 |
-
|
433 |
-
num_freqs_per_band = reduce(freqs_per_band, 'b f -> b', 'sum')
|
434 |
-
num_bands_per_freq = reduce(freqs_per_band, 'b f -> f', 'sum')
|
435 |
-
|
436 |
-
self.register_buffer('num_freqs_per_band', num_freqs_per_band, persistent=False)
|
437 |
-
self.register_buffer('num_bands_per_freq', num_bands_per_freq, persistent=False)
|
438 |
-
|
439 |
-
# band split and mask estimator
|
440 |
-
|
441 |
-
freqs_per_bands_with_complex = tuple(2 * f * self.audio_channels for f in num_freqs_per_band.tolist())
|
442 |
-
|
443 |
-
self.band_split = BandSplit(
|
444 |
-
dim=dim,
|
445 |
-
dim_inputs=freqs_per_bands_with_complex
|
446 |
-
)
|
447 |
-
|
448 |
-
self.mask_estimators = nn.ModuleList([])
|
449 |
-
|
450 |
-
for _ in range(num_stems):
|
451 |
-
mask_estimator = MaskEstimator(
|
452 |
-
dim=dim,
|
453 |
-
dim_inputs=freqs_per_bands_with_complex,
|
454 |
-
depth=mask_estimator_depth
|
455 |
-
)
|
456 |
-
|
457 |
-
self.mask_estimators.append(mask_estimator)
|
458 |
-
|
459 |
-
# for the multi-resolution stft loss
|
460 |
-
|
461 |
-
self.multi_stft_resolution_loss_weight = multi_stft_resolution_loss_weight
|
462 |
-
self.multi_stft_resolutions_window_sizes = multi_stft_resolutions_window_sizes
|
463 |
-
self.multi_stft_n_fft = stft_n_fft
|
464 |
-
self.multi_stft_window_fn = multi_stft_window_fn
|
465 |
-
|
466 |
-
self.multi_stft_kwargs = dict(
|
467 |
-
hop_length=multi_stft_hop_size,
|
468 |
-
normalized=multi_stft_normalized
|
469 |
-
)
|
470 |
-
|
471 |
-
self.match_input_audio_length = match_input_audio_length
|
472 |
-
|
473 |
-
def forward(
|
474 |
-
self,
|
475 |
-
raw_audio,
|
476 |
-
target=None,
|
477 |
-
return_loss_breakdown=False
|
478 |
-
):
|
479 |
-
"""
|
480 |
-
einops
|
481 |
-
|
482 |
-
b - batch
|
483 |
-
f - freq
|
484 |
-
t - time
|
485 |
-
s - audio channel (1 for mono, 2 for stereo)
|
486 |
-
n - number of 'stems'
|
487 |
-
c - complex (2)
|
488 |
-
d - feature dimension
|
489 |
-
"""
|
490 |
-
|
491 |
-
device = raw_audio.device
|
492 |
-
|
493 |
-
if raw_audio.ndim == 2:
|
494 |
-
raw_audio = rearrange(raw_audio, 'b t -> b 1 t')
|
495 |
-
|
496 |
-
batch, channels, raw_audio_length = raw_audio.shape
|
497 |
-
|
498 |
-
istft_length = raw_audio_length if self.match_input_audio_length else None
|
499 |
-
|
500 |
-
assert (not self.stereo and channels == 1) or (
|
501 |
-
self.stereo and channels == 2), 'stereo needs to be set to True if passing in audio signal that is stereo (channel dimension of 2). also need to be False if mono (channel dimension of 1)'
|
502 |
-
|
503 |
-
# to stft
|
504 |
-
|
505 |
-
raw_audio, batch_audio_channel_packed_shape = pack_one(raw_audio, '* t')
|
506 |
-
|
507 |
-
stft_window = self.stft_window_fn(device=device)
|
508 |
-
|
509 |
-
stft_repr = torch.stft(raw_audio, **self.stft_kwargs, window=stft_window, return_complex=True)
|
510 |
-
stft_repr = torch.view_as_real(stft_repr)
|
511 |
-
|
512 |
-
stft_repr = unpack_one(stft_repr, batch_audio_channel_packed_shape, '* f t c')
|
513 |
-
stft_repr = rearrange(stft_repr,
|
514 |
-
'b s f t c -> b (f s) t c') # merge stereo / mono into the frequency, with frequency leading dimension, for band splitting
|
515 |
-
|
516 |
-
# index out all frequencies for all frequency ranges across bands ascending in one go
|
517 |
-
|
518 |
-
batch_arange = torch.arange(batch, device=device)[..., None]
|
519 |
-
|
520 |
-
# account for stereo
|
521 |
-
|
522 |
-
x = stft_repr[batch_arange, self.freq_indices]
|
523 |
-
|
524 |
-
# fold the complex (real and imag) into the frequencies dimension
|
525 |
-
|
526 |
-
x = rearrange(x, 'b f t c -> b t (f c)')
|
527 |
-
|
528 |
-
x = self.band_split(x)
|
529 |
-
|
530 |
-
# axial / hierarchical attention
|
531 |
-
|
532 |
-
for transformer_block in self.layers:
|
533 |
-
|
534 |
-
if len(transformer_block) == 3:
|
535 |
-
linear_transformer, time_transformer, freq_transformer = transformer_block
|
536 |
-
|
537 |
-
x, ft_ps = pack([x], 'b * d')
|
538 |
-
x = linear_transformer(x)
|
539 |
-
x, = unpack(x, ft_ps, 'b * d')
|
540 |
-
else:
|
541 |
-
time_transformer, freq_transformer = transformer_block
|
542 |
-
|
543 |
-
x = rearrange(x, 'b t f d -> b f t d')
|
544 |
-
x, ps = pack([x], '* t d')
|
545 |
-
|
546 |
-
x = time_transformer(x)
|
547 |
-
|
548 |
-
x, = unpack(x, ps, '* t d')
|
549 |
-
x = rearrange(x, 'b f t d -> b t f d')
|
550 |
-
x, ps = pack([x], '* f d')
|
551 |
-
|
552 |
-
x = freq_transformer(x)
|
553 |
-
|
554 |
-
x, = unpack(x, ps, '* f d')
|
555 |
-
|
556 |
-
num_stems = len(self.mask_estimators)
|
557 |
-
|
558 |
-
masks = torch.stack([fn(x) for fn in self.mask_estimators], dim=1)
|
559 |
-
masks = rearrange(masks, 'b n t (f c) -> b n f t c', c=2)
|
560 |
-
|
561 |
-
# modulate frequency representation
|
562 |
-
|
563 |
-
stft_repr = rearrange(stft_repr, 'b f t c -> b 1 f t c')
|
564 |
-
|
565 |
-
# complex number multiplication
|
566 |
-
|
567 |
-
stft_repr = torch.view_as_complex(stft_repr)
|
568 |
-
masks = torch.view_as_complex(masks)
|
569 |
-
|
570 |
-
masks = masks.type(stft_repr.dtype)
|
571 |
-
|
572 |
-
# need to average the estimated mask for the overlapped frequencies
|
573 |
-
|
574 |
-
scatter_indices = repeat(self.freq_indices, 'f -> b n f t', b=batch, n=num_stems, t=stft_repr.shape[-1])
|
575 |
-
|
576 |
-
stft_repr_expanded_stems = repeat(stft_repr, 'b 1 ... -> b n ...', n=num_stems)
|
577 |
-
masks_summed = torch.zeros_like(stft_repr_expanded_stems).scatter_add_(2, scatter_indices, masks)
|
578 |
-
|
579 |
-
denom = repeat(self.num_bands_per_freq, 'f -> (f r) 1', r=channels)
|
580 |
-
|
581 |
-
masks_averaged = masks_summed / denom.clamp(min=1e-8)
|
582 |
-
|
583 |
-
# modulate stft repr with estimated mask
|
584 |
-
|
585 |
-
stft_repr = stft_repr * masks_averaged
|
586 |
-
|
587 |
-
# istft
|
588 |
-
|
589 |
-
stft_repr = rearrange(stft_repr, 'b n (f s) t -> (b n s) f t', s=self.audio_channels)
|
590 |
-
|
591 |
-
recon_audio = torch.istft(stft_repr, **self.stft_kwargs, window=stft_window, return_complex=False,
|
592 |
-
length=istft_length)
|
593 |
-
|
594 |
-
recon_audio = rearrange(recon_audio, '(b n s) t -> b n s t', b=batch, s=self.audio_channels, n=num_stems)
|
595 |
-
|
596 |
-
if num_stems == 1:
|
597 |
-
recon_audio = rearrange(recon_audio, 'b 1 s t -> b s t')
|
598 |
-
|
599 |
-
# if a target is passed in, calculate loss for learning
|
600 |
-
|
601 |
-
if not exists(target):
|
602 |
-
return recon_audio
|
603 |
-
|
604 |
-
if self.num_stems > 1:
|
605 |
-
assert target.ndim == 4 and target.shape[1] == self.num_stems
|
606 |
-
|
607 |
-
if target.ndim == 2:
|
608 |
-
target = rearrange(target, '... t -> ... 1 t')
|
609 |
-
|
610 |
-
target = target[..., :recon_audio.shape[-1]] # protect against lost length on istft
|
611 |
-
|
612 |
-
loss = F.l1_loss(recon_audio, target)
|
613 |
-
|
614 |
-
multi_stft_resolution_loss = 0.
|
615 |
-
|
616 |
-
for window_size in self.multi_stft_resolutions_window_sizes:
|
617 |
-
res_stft_kwargs = dict(
|
618 |
-
n_fft=max(window_size, self.multi_stft_n_fft), # not sure what n_fft is across multi resolution stft
|
619 |
-
win_length=window_size,
|
620 |
-
return_complex=True,
|
621 |
-
window=self.multi_stft_window_fn(window_size, device=device),
|
622 |
-
**self.multi_stft_kwargs,
|
623 |
-
)
|
624 |
-
|
625 |
-
recon_Y = torch.stft(rearrange(recon_audio, '... s t -> (... s) t'), **res_stft_kwargs)
|
626 |
-
target_Y = torch.stft(rearrange(target, '... s t -> (... s) t'), **res_stft_kwargs)
|
627 |
-
|
628 |
-
multi_stft_resolution_loss = multi_stft_resolution_loss + F.l1_loss(recon_Y, target_Y)
|
629 |
-
|
630 |
-
weighted_multi_resolution_loss = multi_stft_resolution_loss * self.multi_stft_resolution_loss_weight
|
631 |
-
|
632 |
-
total_loss = loss + weighted_multi_resolution_loss
|
633 |
-
|
634 |
-
if not return_loss_breakdown:
|
635 |
-
return total_loss
|
636 |
-
|
637 |
-
return total_loss, (loss, multi_stft_resolution_loss)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|