Add model usage info
Browse files
README.md
CHANGED
@@ -103,6 +103,51 @@ As a baseline to compare `xlm-roberta-base-language-detection` against, we have
|
|
103 |
|vi |0.971 |0.990 |0.980 |500 |
|
104 |
|zh |1.000 |1.000 |1.000 |500 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
## Training procedure
|
107 |
|
108 |
Fine-tuning was done via the `Trainer` API. Here is the [Colab notebook](https://colab.research.google.com/drive/15LJTckS6gU3RQOmjLqxVNBmbsBdnUEvl?usp=sharing) with the training code.
|
|
|
103 |
|vi |0.971 |0.990 |0.980 |500 |
|
104 |
|zh |1.000 |1.000 |1.000 |500 |
|
105 |
|
106 |
+
## How to get started with the model
|
107 |
+
|
108 |
+
The easiest way to use the model is via the high-level `pipeline` API:
|
109 |
+
|
110 |
+
```python
|
111 |
+
from transformers import pipeline
|
112 |
+
|
113 |
+
text = [
|
114 |
+
"Brevity is the soul of wit.",
|
115 |
+
"Amor, ch'a nullo amato amar perdona."
|
116 |
+
]
|
117 |
+
|
118 |
+
model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
119 |
+
pipe = pipeline("text-classification", model=model_ckpt)
|
120 |
+
pipe(text, top_k=1, truncation=True)
|
121 |
+
```
|
122 |
+
|
123 |
+
Or one can proceed with the tokenizer and model separately:
|
124 |
+
|
125 |
+
```python
|
126 |
+
import torch
|
127 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
128 |
+
|
129 |
+
text = [
|
130 |
+
"Brevity is the soul of wit.",
|
131 |
+
"Amor, ch'a nullo amato amar perdona."
|
132 |
+
]
|
133 |
+
|
134 |
+
model_ckpt = "papluca/xlm-roberta-base-language-detection"
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
|
136 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_ckpt)
|
137 |
+
|
138 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
139 |
+
|
140 |
+
with torch.no_grad():
|
141 |
+
logits = model(**inputs).logits
|
142 |
+
|
143 |
+
preds = torch.softmax(logits, dim=-1)
|
144 |
+
|
145 |
+
# Map raw predictions to languages
|
146 |
+
id2lang = model.config.id2label
|
147 |
+
vals, idxs = torch.max(preds, dim=1)
|
148 |
+
{id2lang[k.item()]: v.item() for k, v in zip(idxs, vals)}
|
149 |
+
```
|
150 |
+
|
151 |
## Training procedure
|
152 |
|
153 |
Fine-tuning was done via the `Trainer` API. Here is the [Colab notebook](https://colab.research.google.com/drive/15LJTckS6gU3RQOmjLqxVNBmbsBdnUEvl?usp=sharing) with the training code.
|