Papers
arxiv:2411.00743

Decoding Dark Matter: Specialized Sparse Autoencoders for Interpreting Rare Concepts in Foundation Models

Published on Nov 1
· Submitted by aashiqmuhamed on Nov 5
Authors:
,

Abstract

Understanding and mitigating the potential risks associated with foundation models (FMs) hinges on developing effective interpretability methods. Sparse Autoencoders (SAEs) have emerged as a promising tool for disentangling FM representations, but they struggle to capture rare, yet crucial concepts in the data. We introduce Specialized Sparse Autoencoders (SSAEs), designed to illuminate these elusive dark matter features by focusing on specific subdomains. We present a practical recipe for training SSAEs, demonstrating the efficacy of dense retrieval for data selection and the benefits of Tilted Empirical Risk Minimization as a training objective to improve concept recall. Our evaluation of SSAEs on standard metrics, such as downstream perplexity and L_0 sparsity, show that they effectively capture subdomain tail concepts, exceeding the capabilities of general-purpose SAEs. We showcase the practical utility of SSAEs in a case study on the Bias in Bios dataset, where SSAEs achieve a 12.5\% increase in worst-group classification accuracy when applied to remove spurious gender information. SSAEs provide a powerful new lens for peering into the inner workings of FMs in subdomains.

Community

Paper author Paper submitter

Understanding and mitigating the potential risks associated with foundation models (FMs) hinges on developing effective interpretability methods. Sparse Autoencoders (SAEs) have emerged as a promising tool for disentangling FM representations, but they struggle to capture rare, yet crucial concepts in the data. We introduce Specialized Sparse Autoencoders (SSAEs), designed to illuminate these elusive dark matter features by focusing on specific subdomains. We present a practical recipe for training SSAEs, demonstrating the efficacy of dense retrieval for data selection and the benefits of Tilted Empirical Risk Minimization as a training objective to improve concept recall. Our evaluation of SSAEs on standard metrics, such as downstream perplexity and L0 sparsity, show that they effectively capture subdomain tail concepts, exceeding the capabilities of general-purpose SAEs. We showcase the practical utility of SSAEs in a case study on the Bias in Bios dataset, where SSAEs achieve a 12.5% increase in worst-group classification accuracy when applied to remove spurious gender information. SSAEs provide a powerful new lens for peering into the inner workings of FMs in subdomains.

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2411.00743 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2411.00743 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2411.00743 in a Space README.md to link it from this page.

Collections including this paper 4