Papers
arxiv:2408.12637

Building and better understanding vision-language models: insights and future directions

Published on Aug 22
· Submitted by HugoLaurencon on Aug 26
#1 Paper of the day
Authors:
,

Abstract

The field of vision-language models (VLMs), which take images and texts as inputs and output texts, is rapidly evolving and has yet to reach consensus on several key aspects of the development pipeline, including data, architecture, and training methods. This paper can be seen as a tutorial for building a VLM. We begin by providing a comprehensive overview of the current state-of-the-art approaches, highlighting the strengths and weaknesses of each, addressing the major challenges in the field, and suggesting promising research directions for underexplored areas. We then walk through the practical steps to build Idefics3-8B, a powerful VLM that significantly outperforms its predecessor Idefics2-8B, while being trained efficiently, exclusively on open datasets, and using a straightforward pipeline. These steps include the creation of Docmatix, a dataset for improving document understanding capabilities, which is 240 times larger than previously available datasets. We release the model along with the datasets created for its training.

Community

Paper author Paper submitter
edited Aug 26
This comment has been hidden

This is an automated message from the Librarian Bot. I found the following papers similar to this paper.

The following papers were recommended by the Semantic Scholar API

Please give a thumbs up to this comment if you found it helpful!

If you want recommendations for any Paper on Hugging Face checkout this Space

You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: @librarian-bot recommend

This was an absolute joy to read! Thank you for the excellent model/paper.

·
Paper author

Thanks!

Sign up or log in to comment

Models citing this paper 2

Datasets citing this paper 1

Spaces citing this paper 9

Collections including this paper 44