CATT: Character-based Arabic Tashkeel Transformer
Abstract
Tashkeel, or Arabic Text Diacritization (ATD), greatly enhances the comprehension of Arabic text by removing ambiguity and minimizing the risk of misinterpretations caused by its absence. It plays a crucial role in improving Arabic text processing, particularly in applications such as text-to-speech and machine translation. This paper introduces a new approach to training ATD models. First, we finetuned two transformers, encoder-only and encoder-decoder, that were initialized from a pretrained character-based BERT. Then, we applied the Noisy-Student approach to boost the performance of the best model. We evaluated our models alongside 11 commercial and open-source models using two manually labeled benchmark datasets: WikiNews and our CATT dataset. Our findings show that our top model surpasses all evaluated models by relative Diacritic Error Rates (DERs) of 30.83\% and 35.21\% on WikiNews and CATT, respectively, achieving state-of-the-art in ATD. In addition, we show that our model outperforms GPT-4-turbo on CATT dataset by a relative DER of 9.36\%. We open-source our CATT models and benchmark dataset for the research communityhttps://github.com/abjadai/catt.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 1
Collections including this paper 0
No Collection including this paper