Abstract
In this paper, we introduce the Convolutional Kolmogorov-Arnold Networks (Convolutional KANs), an innovative alternative to the standard Convolutional Neural Networks (CNNs) that have revolutionized the field of computer vision. We integrate the non-linear activation functions presented in Kolmogorov-Arnold Networks (KANs) into convolutions to build a new layer. Throughout the paper, we empirically validate the performance of Convolutional KANs against traditional architectures across MNIST and Fashion-MNIST benchmarks, illustrating that this new approach maintains a similar level of accuracy while using half the amount of parameters. This significant reduction of parameters opens up a new approach to advance the optimization of neural network architectures.
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper