Toward Inference-optimal Mixture-of-Expert Large Language Models
Abstract
Mixture-of-Expert (MoE) based large language models (LLMs), such as the recent Mixtral and DeepSeek-MoE, have shown great promise in scaling model size without suffering from the quadratic growth of training cost of dense transformers. Like dense models, training MoEs requires answering the same question: given a training budget, what is the optimal allocation on the model size and number of tokens? We study the scaling law of MoE-based LLMs regarding the relations between the model performance, model size, dataset size, and the expert degree. Echoing previous research studying MoE in different contexts, we observe the diminishing return of increasing the number of experts, but this seems to suggest we should scale the number of experts until saturation, as the training cost would remain constant, which is problematic during inference time. We propose to amend the scaling law of MoE by introducing inference efficiency as another metric besides the validation loss. We find that MoEs with a few (4/8) experts are the most serving efficient solution under the same performance, but costs 2.5-3.5x more in training. On the other hand, training a (16/32) expert MoE much smaller (70-85%) than the loss-optimal solution, but with a larger training dataset is a promising setup under a training budget.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper