VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models
Abstract
Text-to-video generation aims to produce a video based on a given prompt. Recently, several commercial video models have been able to generate plausible videos with minimal noise, excellent details, and high aesthetic scores. However, these models rely on large-scale, well-filtered, high-quality videos that are not accessible to the community. Many existing research works, which train models using the low-quality WebVid-10M dataset, struggle to generate high-quality videos because the models are optimized to fit WebVid-10M. In this work, we explore the training scheme of video models extended from Stable Diffusion and investigate the feasibility of leveraging low-quality videos and synthesized high-quality images to obtain a high-quality video model. We first analyze the connection between the spatial and temporal modules of video models and the distribution shift to low-quality videos. We observe that full training of all modules results in a stronger coupling between spatial and temporal modules than only training temporal modules. Based on this stronger coupling, we shift the distribution to higher quality without motion degradation by finetuning spatial modules with high-quality images, resulting in a generic high-quality video model. Evaluations are conducted to demonstrate the superiority of the proposed method, particularly in picture quality, motion, and concept composition.
Community
This is an automated message from the Librarian Bot. I found the following papers similar to this paper.
The following papers were recommended by the Semantic Scholar API
- AnimateZero: Video Diffusion Models are Zero-Shot Image Animators (2023)
- A Recipe for Scaling up Text-to-Video Generation with Text-free Videos (2023)
- VideoDrafter: Content-Consistent Multi-Scene Video Generation with LLM (2024)
- Smooth Video Synthesis with Noise Constraints on Diffusion Models for One-shot Video Tuning (2023)
- Moonshot: Towards Controllable Video Generation and Editing with Multimodal Conditions (2024)
Please give a thumbs up to this comment if you found it helpful!
If you want recommendations for any Paper on Hugging Face checkout this Space
Models citing this paper 1
Datasets citing this paper 0
No dataset linking this paper