Papers
arxiv:2309.06895

MagiCapture: High-Resolution Multi-Concept Portrait Customization

Published on Sep 13, 2023
Β· Submitted by akhaliq on Sep 14, 2023
#1 Paper of the day

Abstract

Large-scale text-to-image models including Stable Diffusion are capable of generating high-fidelity photorealistic portrait images. There is an active research area dedicated to personalizing these models, aiming to synthesize specific subjects or styles using provided sets of reference images. However, despite the plausible results from these personalization methods, they tend to produce images that often fall short of realism and are not yet on a commercially viable level. This is particularly noticeable in portrait image generation, where any unnatural artifact in human faces is easily discernible due to our inherent human bias. To address this, we introduce MagiCapture, a personalization method for integrating subject and style concepts to generate high-resolution portrait images using just a few subject and style references. For instance, given a handful of random selfies, our fine-tuned model can generate high-quality portrait images in specific styles, such as passport or profile photos. The main challenge with this task is the absence of ground truth for the composed concepts, leading to a reduction in the quality of the final output and an identity shift of the source subject. To address these issues, we present a novel Attention Refocusing loss coupled with auxiliary priors, both of which facilitate robust learning within this weakly supervised learning setting. Our pipeline also includes additional post-processing steps to ensure the creation of highly realistic outputs. MagiCapture outperforms other baselines in both quantitative and qualitative evaluations and can also be generalized to other non-human objects.

Community

https://github.com/aigc-apps/sd-webui-EasyPhoto

I am not sure if this is the project link for the above paper.

MagiCapture: Revolutionizing High-Resolution Portrait Customization!

Links πŸ”—:

πŸ‘‰ Subscribe: https://www.youtube.com/@Arxflix
πŸ‘‰ Twitter: https://x.com/arxflix
πŸ‘‰ LMNT (Partner): https://lmnt.com/

By Arxflix
9t4iCUHx_400x400-1.jpg

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2309.06895 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2309.06895 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2309.06895 in a Space README.md to link it from this page.

Collections including this paper 5