Papers
arxiv:2306.03241

Early Weight Averaging meets High Learning Rates for LLM Pre-training

Published on Jun 5, 2023
Authors:
,
,
,
,

Abstract

Training Large Language Models (LLMs) incurs significant cost; hence, any strategy that accelerates model convergence is helpful. In this paper, we investigate the ability of a simple idea checkpoint averaging along the trajectory of a training run to improve both convergence and generalization quite early on during training. Here we show that models trained with high learning rates observe higher gains due to checkpoint averaging. Furthermore, these gains are amplified when checkpoints are sampled with considerable spacing in training steps. Our training recipe outperforms conventional training and popular checkpoint averaging baselines such as exponential moving average (EMA) and stochastic moving average (SWA). We evaluate our training recipe by pre-training LLMs, where high learning rates are inherently preferred due to extremely large batch sizes. Specifically, we pre-trained nanoGPT-2 models of varying sizes, small (125M), medium (335M), and large (770M)on the OpenWebText dataset, comprised of 9B tokens. Additionally, we present results for publicly available Pythia LLMs, ranging from 1B to 12B, which were trained on the PILE-deduped dataset containing 207B tokens.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2306.03241 in a model README.md to link it from this page.

Datasets citing this paper 0

No dataset linking this paper

Cite arxiv.org/abs/2306.03241 in a dataset README.md to link it from this page.

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2306.03241 in a Space README.md to link it from this page.

Collections including this paper 2