File size: 5,129 Bytes
ebb11b6
 
 
cacc273
ebb11b6
 
cacc273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb11b6
 
 
 
 
 
 
 
13fb111
 
 
 
 
 
 
 
 
ebb11b6
 
 
 
 
13fb111
ebb11b6
 
 
 
13fb111
ebb11b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cacc273
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
---
language:
- en
license: llama3
library_name: transformers
pipeline_tag: text2text-generation
model-index:
- name: orca_mini_v6_8b_dpo
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 38.83
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 32.48
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 5.51
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.82
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 9.26
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 28.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=pankajmathur/orca_mini_v6_8b_dpo
      name: Open LLM Leaderboard
---

**Model Name: Llama 3 orca_mini_v6_8b_dpo**

# Llama 3 orca_mini_v6_8b_dpo is trained with various DPO Datasets

<img src="https://huggingface.co/pankajmathur/orca_mini_v5_8b/resolve/main/orca_minis_small.jpeg" width="auto" />

<strong>
Passionate about Generative AI? I help companies to privately train and deploy custom LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat!

<a href="https://www.linkedin.com/in/pankajam" target="_blank">https://www.linkedin.com/in/pankajam</a> Looking forward to connecting!
</strong>

<br>

### NOTICE

By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges. 
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model. 
Dive in and innovate!

### Evaluation

Coming Soon..


### Example Usage

Here is the ChatML prompt format

```
<|im_start|>system
You are Orca Mini, a helpful AI assistant.<|im_end|>
<|im_start|>user
Hello Orca Mini, what can you do for me?<|im_end|>
<|im_start|>assistant
```

Below shows a code example on how to use this model

```python
from transformers import AutoModel, AutoTokenizer
model_slug = "pankajmathur/orca_mini_v6_8b_dpo"
model = AutoModel.from_pretrained(model_slug)
tokenizer = AutoTokenizer.from_pretrained(model_slug)

messages = [
    {"role": "system", "content": "You are Orca Mini, a helpful AI assistant."},
    {"role": "user", "content": "Hello Orca Mini, what can you do for me?"}
]

gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt")
model.generate(**gen_input)
```
This model is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE)

**Quants**

GGUF : Coming Soon

AWQ: Coming Soon


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_pankajmathur__orca_mini_v6_8b_dpo)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |20.29|
|IFEval (0-Shot)    |38.83|
|BBH (3-Shot)       |32.48|
|MATH Lvl 5 (4-Shot)| 5.51|
|GPQA (0-shot)      | 6.82|
|MuSR (0-shot)      | 9.26|
|MMLU-PRO (5-shot)  |28.85|