File size: 3,920 Bytes
489cd9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
"from PIL import Image\n",
"\n",
"import torch\n",
"from transformers import (\n",
" AutoModelForImageClassification,\n",
" AutoImageProcessor,\n",
")\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"MODEL_NAME = \"p1atdev/siglip-tagger-test-2\""
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"model = AutoModelForImageClassification.from_pretrained(\n",
" MODEL_NAME, torch_dtype=torch.bfloat16, trust_remote_code=True\n",
")\n",
"model.eval()\n",
"processor = AutoImageProcessor.from_pretrained(MODEL_NAME)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"image = Image.open(\"sample.jpg\")\n",
"inputs = processor(image, return_tensors=\"pt\").to(model.device, model.dtype)"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
"logits = model(**inputs).logits.detach().cpu().float()[0]\n",
"logits = np.clip(logits, 0.0, 1.0)"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"results = {\n",
" model.config.id2label[i]: logit for i, logit in enumerate(logits) if logit > 0\n",
"}\n",
"results = sorted(results.items(), key=lambda x: x[1], reverse=True)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1girl: 100.00%\n",
"outdoors: 100.00%\n",
"sky: 100.00%\n",
"solo: 100.00%\n",
"school uniform: 96.88%\n",
"skirt: 92.97%\n",
"day: 89.06%\n",
"cloud: 85.94%\n",
"scenery: 79.69%\n",
"pleated skirt: 72.27%\n",
"black hair: 66.80%\n",
"standing: 65.62%\n",
"sailor collar: 59.38%\n",
"sitting: 57.81%\n",
"long sleeves: 53.52%\n",
"serafuku: 53.12%\n",
"holding: 52.34%\n",
"tree: 47.46%\n",
"dress: 46.48%\n",
"shoes: 43.55%\n",
"building: 42.77%\n",
"neckerchief: 40.82%\n",
"short hair: 38.09%\n",
"water: 38.09%\n",
"cloudy sky: 37.30%\n",
"looking at viewer: 32.23%\n",
"long hair: 32.03%\n",
"brown eyes: 31.45%\n",
"plant: 31.05%\n",
"bag: 29.30%\n",
"railing: 29.10%\n",
"sunlight: 28.12%\n",
"from side: 27.73%\n",
"window: 27.54%\n",
"brown hair: 26.37%\n",
"white shirt: 25.78%\n",
"shirt: 25.39%\n",
"blue sky: 23.93%\n",
"hairclip: 23.44%\n",
"blunt bangs: 21.58%\n",
"picture frame: 19.34%\n",
"hand up: 18.26%\n",
"black skirt: 17.87%\n",
"smile: 17.87%\n",
"from behind: 13.57%\n",
"cowboy shot: 10.99%\n",
"indoors: 10.74%\n",
"curtains: 10.25%\n",
"facing away: 9.23%\n",
"white socks: 6.08%\n",
"bottle: 6.01%\n",
"mountain: 5.66%\n",
"blue skirt: 5.13%\n",
"drinking straw: 3.37%\n",
"kneehighs: 1.71%\n"
]
}
],
"source": [
"for tag, score in results:\n",
" print(f\"{tag}: {score*100:.2f}%\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "py310",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|