tc-mb commited on
Commit
555fc3f
1 Parent(s): 45e9e4d

Upload 18 files

Browse files
added_tokens.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 151651,
3
+ "</image>": 151647,
4
+ "</image_id>": 151659,
5
+ "</point>": 151655,
6
+ "</quad>": 151653,
7
+ "</ref>": 151649,
8
+ "</slice>": 151657,
9
+ "<box>": 151650,
10
+ "<image>": 151646,
11
+ "<image_id>": 151658,
12
+ "<point>": 151654,
13
+ "<quad>": 151652,
14
+ "<ref>": 151648,
15
+ "<slice>": 151656,
16
+ "<|endoftext|>": 151643,
17
+ "<|im_end|>": 151645,
18
+ "<|im_start|>": 151644,
19
+ "<|reserved_special_token_0|>": 151660,
20
+ "<|reserved_special_token_1|>": 151661,
21
+ "<|reserved_special_token_2|>": 151662,
22
+ "<|reserved_special_token_3|>": 151663,
23
+ "<|reserved_special_token_4|>": 151664,
24
+ "<|reserved_special_token_5|>": 151665
25
+ }
config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openbmb/MiniCPM-V-2_6",
3
+ "architectures": [
4
+ "MiniCPMV"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_minicpm.MiniCPMVConfig",
9
+ "AutoModel": "modeling_minicpmv.MiniCPMV",
10
+ "AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
11
+ },
12
+ "batch_vision_input": true,
13
+ "bos_token_id": 151643,
14
+ "drop_vision_last_layer": false,
15
+ "eos_token_id": 151645,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 3584,
18
+ "image_size": 448,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 18944,
21
+ "max_position_embeddings": 32768,
22
+ "max_window_layers": 28,
23
+ "model_type": "minicpmv",
24
+ "num_attention_heads": 28,
25
+ "num_hidden_layers": 28,
26
+ "num_key_value_heads": 4,
27
+ "patch_size": 14,
28
+ "quantization_config": {
29
+ "_load_in_4bit": true,
30
+ "_load_in_8bit": false,
31
+ "bnb_4bit_compute_dtype": "bfloat16",
32
+ "bnb_4bit_quant_storage": "uint8",
33
+ "bnb_4bit_quant_type": "nf4",
34
+ "bnb_4bit_use_double_quant": true,
35
+ "llm_int8_enable_fp32_cpu_offload": false,
36
+ "llm_int8_has_fp16_weight": false,
37
+ "llm_int8_skip_modules": [
38
+ "out_proj",
39
+ "kv_proj",
40
+ "lm_head"
41
+ ],
42
+ "llm_int8_threshold": 6.0,
43
+ "load_in_4bit": true,
44
+ "load_in_8bit": false,
45
+ "quant_method": "bitsandbytes"
46
+ },
47
+ "query_num": 64,
48
+ "rms_norm_eps": 1e-06,
49
+ "rope_theta": 1000000.0,
50
+ "slice_config": {
51
+ "max_slice_nums": 9,
52
+ "model_type": "minicpmv"
53
+ },
54
+ "slice_mode": true,
55
+ "sliding_window": null,
56
+ "tie_word_embeddings": false,
57
+ "torch_dtype": "bfloat16",
58
+ "transformers_version": "4.43.3",
59
+ "use_cache": true,
60
+ "use_image_id": true,
61
+ "use_sliding_window": false,
62
+ "version": 2.6,
63
+ "vision_config": {
64
+ "hidden_size": 1152,
65
+ "image_size": 980,
66
+ "intermediate_size": 4304,
67
+ "model_type": "siglip_vision_model",
68
+ "num_attention_heads": 16,
69
+ "num_hidden_layers": 27,
70
+ "patch_size": 14
71
+ },
72
+ "vocab_size": 151666
73
+ }
configuration_minicpm.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """ MiniCPMV model configuration"""
3
+
4
+ import os
5
+ from typing import Union
6
+
7
+ from transformers.utils import logging
8
+ from transformers import Qwen2Config, PretrainedConfig
9
+ from .modeling_navit_siglip import SiglipVisionConfig
10
+
11
+ logger = logging.get_logger(__name__)
12
+
13
+
14
+ class MiniCPMVSliceConfig(PretrainedConfig):
15
+ model_type = "minicpmv"
16
+
17
+ def __init__(
18
+ self,
19
+ patch_size=14,
20
+ max_slice_nums=9,
21
+ scale_resolution=448,
22
+ **kwargs,
23
+ ):
24
+ super().__init__(**kwargs)
25
+ self.patch_size = patch_size
26
+ self.max_slice_nums = max_slice_nums
27
+ self.scale_resolution = scale_resolution
28
+
29
+ @classmethod
30
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
31
+ cls._set_token_in_kwargs(kwargs)
32
+
33
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
34
+
35
+ if config_dict.get("model_type") == "minicpmv":
36
+ config_dict = config_dict["slice_config"]
37
+
38
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
39
+ logger.warning(
40
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
41
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
42
+ )
43
+
44
+ return cls.from_dict(config_dict, **kwargs)
45
+
46
+
47
+
48
+ class MiniCPMVConfig(Qwen2Config):
49
+ model_type = "minicpmv"
50
+ keys_to_ignore_at_inference = ["past_key_values"]
51
+
52
+ default_vision_config = {
53
+ "hidden_size": 1152,
54
+ "image_size": 980,
55
+ "intermediate_size": 4304,
56
+ "model_type": "siglip",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 27,
59
+ "patch_size": 14,
60
+ }
61
+
62
+ def __init__(
63
+ self,
64
+ use_cache=True,
65
+ query_num=64,
66
+ image_size=448,
67
+ drop_vision_last_layer=True,
68
+ batch_vision_input=True,
69
+ slice_config=None,
70
+ vision_config=None,
71
+ use_image_id=True,
72
+ **kwargs,
73
+ ):
74
+ self.use_cache = use_cache
75
+ self.query_num = query_num
76
+ self.image_size = image_size
77
+ self.drop_vision_last_layer = drop_vision_last_layer
78
+ self.batch_vision_input = batch_vision_input
79
+ self.use_image_id = use_image_id
80
+
81
+ if slice_config is None:
82
+ self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
83
+ else:
84
+ self.slice_config = MiniCPMVSliceConfig(**slice_config)
85
+ self.slice_mode = True
86
+
87
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
88
+ if vision_config is None:
89
+ self.vision_config = SiglipVisionConfig(**self.default_vision_config)
90
+ logger.info("vision_config is None, using default vision config")
91
+ elif isinstance(vision_config, dict):
92
+ self.vision_config = SiglipVisionConfig(**vision_config)
93
+ elif isinstance(vision_config, SiglipVisionConfig):
94
+ self.vision_config = vision_config
95
+
96
+ self.patch_size = self.vision_config.patch_size
97
+
98
+ super().__init__(**kwargs)
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.43.3"
6
+ }
image_processing_minicpmv.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union, Dict, Any, List
2
+
3
+ import torch
4
+ import math
5
+ import PIL.Image
6
+ import PIL.ImageSequence
7
+ import numpy as np
8
+ import PIL
9
+ from PIL import Image
10
+
11
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
12
+ from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
13
+ from transformers import AutoImageProcessor
14
+ from transformers.image_transforms import to_channel_dimension_format
15
+ from transformers.image_utils import (
16
+ ImageInput,
17
+ make_list_of_images,
18
+ valid_images,
19
+ is_torch_tensor,
20
+ is_batched,
21
+ to_numpy_array,
22
+ infer_channel_dimension_format,
23
+ ChannelDimension
24
+ )
25
+
26
+
27
+ def recursive_converter(converter, value):
28
+ if isinstance(value, list):
29
+ new_value = []
30
+ for v in value:
31
+ new_value += [recursive_converter(converter, v)]
32
+ return new_value
33
+ else:
34
+ return converter(value)
35
+
36
+
37
+ class MiniCPMVBatchFeature(BatchFeature):
38
+ r"""
39
+ Extend from BatchFeature for supporting various image size
40
+ """
41
+ def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
42
+ super().__init__(data)
43
+ self.convert_to_tensors(tensor_type=tensor_type)
44
+
45
+ def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
46
+ if tensor_type is None:
47
+ return self
48
+
49
+ is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
50
+
51
+ def converter(value):
52
+ try:
53
+ if not is_tensor(value):
54
+ tensor = as_tensor(value)
55
+ return tensor
56
+ except: # noqa E722
57
+ if key == "overflowing_values":
58
+ raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
59
+ raise ValueError(
60
+ "Unable to create tensor, you should probably activate padding "
61
+ "with 'padding=True' to have batched tensors with the same length."
62
+ )
63
+
64
+
65
+ for key, value in self.items():
66
+ self[key] = recursive_converter(converter, value)
67
+ return self
68
+
69
+ def to(self, *args, **kwargs) -> "MiniCPMVBatchFeature":
70
+ requires_backends(self, ["torch"])
71
+ import torch
72
+
73
+ def cast_tensor(v):
74
+ # check if v is a floating point
75
+ if torch.is_floating_point(v):
76
+ # cast and send to device
77
+ return v.to(*args, **kwargs)
78
+ elif device is not None:
79
+ return v.to(device=device)
80
+ else:
81
+ return v
82
+
83
+ new_data = {}
84
+ device = kwargs.get("device")
85
+ # Check if the args are a device or a dtype
86
+ if device is None and len(args) > 0:
87
+ # device should be always the first argument
88
+ arg = args[0]
89
+ if is_torch_dtype(arg):
90
+ # The first argument is a dtype
91
+ pass
92
+ elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
93
+ device = arg
94
+ else:
95
+ # it's something else
96
+ raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
97
+ # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
98
+ for k, v in self.items():
99
+ new_data[k] = recursive_converter(cast_tensor, v)
100
+ self.data = new_data
101
+ return self
102
+
103
+
104
+ class MiniCPMVImageProcessor(BaseImageProcessor):
105
+ model_input_names = ["pixel_values"]
106
+
107
+ def __init__(
108
+ self,
109
+ max_slice_nums=9,
110
+ scale_resolution=448,
111
+ patch_size=14,
112
+ **kwargs):
113
+ super().__init__(**kwargs)
114
+ self.max_slice_nums = max_slice_nums
115
+ self.scale_resolution = scale_resolution
116
+ self.patch_size = patch_size
117
+ self.use_image_id = kwargs.pop("use_image_id", False)
118
+ self.image_feature_size = kwargs.pop("image_feature_size", 64)
119
+ self.im_start_token = kwargs.pop("im_start", "<image>")
120
+ self.im_end_token = kwargs.pop("im_end", "</image>")
121
+ self.slice_start_token = kwargs.pop("slice_start", "<slice>")
122
+ self.slice_end_token = kwargs.pop("slice_end", "</slice>")
123
+ self.unk_token = kwargs.pop("unk", "<unk>")
124
+ self.im_id_start = kwargs.pop("im_id_start", "<image_id>")
125
+ self.im_id_end = kwargs.pop("im_id_end", "</image_id>")
126
+ self.slice_mode = kwargs.pop("slice_mode", True)
127
+ self.mean = np.array(kwargs.pop("norm_mean", [0.5, 0.5, 0.5]))
128
+ self.std = np.array(kwargs.pop("norm_std", [0.5, 0.5, 0.5]))
129
+ self.version = kwargs.pop("version", 2.0)
130
+
131
+ def ensure_divide(self, length, patch_size):
132
+ return max(round(length / patch_size) * patch_size, patch_size)
133
+
134
+ def find_best_resize(self,
135
+ original_size,
136
+ scale_resolution,
137
+ patch_size,
138
+ allow_upscale=False):
139
+ width, height = original_size
140
+ if (width * height >
141
+ scale_resolution * scale_resolution) or allow_upscale:
142
+ r = width / height
143
+ height = int(scale_resolution / math.sqrt(r))
144
+ width = int(height * r)
145
+ best_width = self.ensure_divide(width, patch_size)
146
+ best_height = self.ensure_divide(height, patch_size)
147
+ return (best_width, best_height)
148
+
149
+ def get_refine_size(self,
150
+ original_size,
151
+ grid,
152
+ scale_resolution,
153
+ patch_size,
154
+ allow_upscale=False):
155
+ width, height = original_size
156
+ grid_x, grid_y = grid
157
+
158
+ refine_width = self.ensure_divide(width, grid_x)
159
+ refine_height = self.ensure_divide(height, grid_y)
160
+
161
+ grid_width = refine_width / grid_x
162
+ grid_height = refine_height / grid_y
163
+
164
+ best_grid_size = self.find_best_resize((grid_width, grid_height),
165
+ scale_resolution,
166
+ patch_size,
167
+ allow_upscale=allow_upscale)
168
+ refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
169
+ return refine_size
170
+
171
+ def split_to_patches(self, image, grid):
172
+ patches = []
173
+ width, height = image.size
174
+ grid_x = int(width / grid[0])
175
+ grid_y = int(height / grid[1])
176
+ for i in range(0, height, grid_y):
177
+ images = []
178
+ for j in range(0, width, grid_x):
179
+ box = (j, i, j + grid_x, i + grid_y)
180
+ patch = image.crop(box)
181
+ images.append(patch)
182
+ patches.append(images)
183
+ return patches
184
+
185
+ def slice_image(
186
+ self, image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
187
+ ):
188
+ original_size = image.size
189
+ source_image = None
190
+ best_grid = self.get_sliced_grid(original_size, max_slice_nums, never_split)
191
+ patches = []
192
+
193
+ if best_grid is None:
194
+ # dont need to slice, upsample
195
+ best_size = self.find_best_resize(
196
+ original_size, scale_resolution, patch_size, allow_upscale=True
197
+ )
198
+ source_image = image.resize(best_size, resample=Image.Resampling.BICUBIC)
199
+ else:
200
+ # source image, down-sampling and ensure divided by patch_size
201
+ best_resize = self.find_best_resize(original_size, scale_resolution, patch_size)
202
+ source_image = image.copy().resize(best_resize, resample=Image.Resampling.BICUBIC)
203
+ refine_size = self.get_refine_size(
204
+ original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
205
+ )
206
+ refine_image = image.resize(refine_size, resample=Image.Resampling.BICUBIC)
207
+ patches = self.split_to_patches(refine_image, best_grid)
208
+
209
+ return source_image, patches, best_grid
210
+
211
+ def get_grid_placeholder(self, grid):
212
+ if grid is None:
213
+ return ""
214
+ slice_image_placeholder = (
215
+ self.slice_start_token
216
+ + self.unk_token * self.image_feature_size
217
+ + self.slice_end_token
218
+ )
219
+
220
+ cols = grid[0]
221
+ rows = grid[1]
222
+ slices = []
223
+ for i in range(rows):
224
+ lines = []
225
+ for j in range(cols):
226
+ lines.append(slice_image_placeholder)
227
+ slices.append("".join(lines))
228
+
229
+ slice_placeholder = "\n".join(slices)
230
+ return slice_placeholder
231
+
232
+ def get_image_id_placeholder(self, idx=0):
233
+ return f"{self.im_id_start}{idx}{self.im_id_end}"
234
+
235
+ def get_sliced_images(self, image, max_slice_nums=None):
236
+ slice_images = []
237
+
238
+ if not self.slice_mode:
239
+ return [image]
240
+
241
+ max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
242
+ assert max_slice_nums > 0
243
+ source_image, patches, sliced_grid = self.slice_image(
244
+ image,
245
+ max_slice_nums, # default: 9
246
+ self.scale_resolution, # default: 448
247
+ self.patch_size # default: 14
248
+ )
249
+
250
+ slice_images.append(source_image)
251
+ if len(patches) > 0:
252
+ for i in range(len(patches)):
253
+ for j in range(len(patches[0])):
254
+ slice_images.append(patches[i][j])
255
+ return slice_images
256
+
257
+ def get_sliced_grid(self, image_size, max_slice_nums, nerver_split=False):
258
+ original_width, original_height = image_size
259
+ log_ratio = math.log(original_width / original_height)
260
+ ratio = original_width * original_height / (self.scale_resolution * self.scale_resolution)
261
+ multiple = min(math.ceil(ratio), max_slice_nums)
262
+ if multiple <= 1 or nerver_split:
263
+ return None
264
+ candidate_split_grids_nums = []
265
+ for i in [multiple - 1, multiple, multiple + 1]:
266
+ if i == 1 or i > max_slice_nums:
267
+ continue
268
+ candidate_split_grids_nums.append(i)
269
+
270
+ candidate_grids = []
271
+ for split_grids_nums in candidate_split_grids_nums:
272
+ m = 1
273
+ while m <= split_grids_nums:
274
+ if split_grids_nums % m == 0:
275
+ candidate_grids.append([m, split_grids_nums // m])
276
+ m += 1
277
+
278
+ best_grid = [1, 1]
279
+ min_error = float("inf")
280
+ for grid in candidate_grids:
281
+ error = abs(log_ratio - math.log(grid[0] / grid[1]))
282
+ if error < min_error:
283
+ best_grid = grid
284
+ min_error = error
285
+
286
+ return best_grid
287
+
288
+ def get_slice_image_placeholder(self, image_size, image_idx=0, max_slice_nums=None, use_image_id=None):
289
+ max_slice_nums = self.max_slice_nums if max_slice_nums is None else int(max_slice_nums)
290
+ assert max_slice_nums > 0
291
+ grid = self.get_sliced_grid(image_size=image_size, max_slice_nums=max_slice_nums)
292
+
293
+ image_placeholder = (
294
+ self.im_start_token
295
+ + self.unk_token * self.image_feature_size
296
+ + self.im_end_token
297
+ )
298
+ use_image_id = self.use_image_id if use_image_id is None else bool(use_image_id)
299
+ if use_image_id:
300
+ final_placeholder = self.get_image_id_placeholder(image_idx) + image_placeholder
301
+ else:
302
+ final_placeholder = image_placeholder
303
+
304
+ if self.slice_mode:
305
+ final_placeholder = final_placeholder + self.get_grid_placeholder(grid=grid)
306
+ return final_placeholder
307
+
308
+ def to_pil_image(self, image, rescale=None) -> PIL.Image.Image:
309
+ """
310
+ Converts `image` to a PIL Image. Optionally rescales it and puts the channel dimension back as the last axis if
311
+ needed.
312
+
313
+ Args:
314
+ image (`PIL.Image.Image` or `numpy.ndarray` or `torch.Tensor`):
315
+ The image to convert to the PIL Image format.
316
+ rescale (`bool`, *optional*):
317
+ Whether or not to apply the scaling factor (to make pixel values integers between 0 and 255). Will
318
+ default to `True` if the image type is a floating type, `False` otherwise.
319
+ """
320
+ if isinstance(image, PIL.Image.Image):
321
+ return image
322
+ if is_torch_tensor(image):
323
+ image = image.numpy()
324
+
325
+ if isinstance(image, np.ndarray):
326
+ if rescale is None:
327
+ # rescale default to the array being of floating type.
328
+ rescale = isinstance(image.flat[0], np.floating)
329
+ # If the channel as been moved to first dim, we put it back at the end.
330
+ if image.ndim == 3 and image.shape[0] in [1, 3]:
331
+ image = image.transpose(1, 2, 0)
332
+ if rescale:
333
+ image = image * 255
334
+ image = image.astype(np.uint8)
335
+ return PIL.Image.fromarray(image)
336
+ return image
337
+
338
+ def reshape_by_patch(self, image):
339
+ """
340
+ :param image: shape [3, H, W]
341
+ :param patch_size:
342
+ :return: [3, patch_size, HW/patch_size]
343
+ """
344
+ image = torch.from_numpy(image)
345
+ patch_size = self.patch_size
346
+ patches = torch.nn.functional.unfold(
347
+ image,
348
+ (patch_size, patch_size),
349
+ stride=(patch_size, patch_size)
350
+ )
351
+
352
+ patches = patches.reshape(image.size(0), patch_size, patch_size, -1)
353
+ patches = patches.permute(0, 1, 3, 2).reshape(image.size(0), patch_size, -1)
354
+ return patches.numpy()
355
+
356
+ def preprocess(
357
+ self,
358
+ images: Union[Image.Image, List[Image.Image], List[List[Image.Image]]],
359
+ do_pad: Optional[bool] = True, # TODO: add pad for MiniCPM-Llama3-V-2_5
360
+ max_slice_nums: int = None,
361
+ return_tensors: Optional[Union[str, TensorType]] = None,
362
+ ) -> MiniCPMVBatchFeature:
363
+ if isinstance(images, Image.Image):
364
+ images_list = [[images]]
365
+ elif isinstance(images[0], Image.Image):
366
+ images_list = [images]
367
+ else:
368
+ images_list = images
369
+
370
+ new_images_list = []
371
+ image_sizes_list = []
372
+ tgt_sizes_list = []
373
+
374
+ for _images in images_list:
375
+ if _images is None or len(_images) == 0:
376
+ new_images_list.append([])
377
+ image_sizes_list.append([])
378
+ tgt_sizes_list.append([])
379
+ continue
380
+ if not valid_images(_images):
381
+ raise ValueError(
382
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
383
+ "torch.Tensor, tf.Tensor or jax.ndarray."
384
+ )
385
+
386
+ _images = [self.to_pil_image(image).convert("RGB") for image in _images]
387
+ input_data_format = infer_channel_dimension_format(np.array(_images[0]))
388
+
389
+ new_images = []
390
+ image_sizes = [image.size for image in _images]
391
+ tgt_sizes = []
392
+ for image in _images:
393
+ image_patches = self.get_sliced_images(image, max_slice_nums)
394
+ image_patches = [to_numpy_array(image).astype(np.float32) / 255 for image in image_patches]
395
+ image_patches = [
396
+ self.normalize(image=image, mean=self.mean, std=self.std, input_data_format=input_data_format)
397
+ for image in image_patches
398
+ ]
399
+ image_patches = [
400
+ to_channel_dimension_format(image, ChannelDimension.FIRST, input_channel_dim=input_data_format)
401
+ for image in image_patches
402
+ ]
403
+ for slice_image in image_patches:
404
+ new_images.append(self.reshape_by_patch(slice_image))
405
+ tgt_sizes.append(np.array((slice_image.shape[1] // self.patch_size, slice_image.shape[2] // self.patch_size)))
406
+
407
+ if tgt_sizes:
408
+ tgt_sizes = np.vstack(tgt_sizes)
409
+
410
+ new_images_list.append(new_images)
411
+ image_sizes_list.append(image_sizes)
412
+ tgt_sizes_list.append(tgt_sizes)
413
+ return MiniCPMVBatchFeature(
414
+ data={"pixel_values": new_images_list, "image_sizes": image_sizes_list, "tgt_sizes": tgt_sizes_list}, tensor_type=return_tensors
415
+ )
416
+
417
+ AutoImageProcessor.register("MiniCPMVImageProcessor", MiniCPMVImageProcessor)
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_minicpmv.py ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Optional
3
+ import json
4
+ import torch
5
+ import torchvision
6
+
7
+ from threading import Thread
8
+ from copy import deepcopy
9
+ from PIL import Image
10
+ from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer
11
+
12
+ from .configuration_minicpm import MiniCPMVConfig
13
+ from .modeling_navit_siglip import SiglipVisionTransformer
14
+ from .resampler import Resampler
15
+
16
+
17
+
18
+ class MiniCPMVPreTrainedModel(Qwen2PreTrainedModel):
19
+ config_class = MiniCPMVConfig
20
+
21
+
22
+ class MiniCPMV(MiniCPMVPreTrainedModel):
23
+ def __init__(self, config):
24
+ super().__init__(config)
25
+ self.llm = Qwen2ForCausalLM(config)
26
+ self.vpm = self.init_vision_module()
27
+ self.vision_dim = self.vpm.embed_dim
28
+ self.embed_dim = self.llm.config.hidden_size
29
+ self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
30
+ self.processor = None
31
+
32
+ self.terminators = ['<|im_end|>', '<|endoftext|>']
33
+
34
+ def init_vision_module(self):
35
+ # same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit add tgt_sizes
36
+ if self.config._attn_implementation == 'flash_attention_2':
37
+ self.config.vision_config._attn_implementation = 'flash_attention_2'
38
+ else:
39
+ # not suport sdpa
40
+ self.config.vision_config._attn_implementation = 'eager'
41
+ model = SiglipVisionTransformer(self.config.vision_config)
42
+ if self.config.drop_vision_last_layer:
43
+ model.encoder.layers = model.encoder.layers[:-1]
44
+
45
+ setattr(model, 'embed_dim', model.embeddings.embed_dim)
46
+ setattr(model, 'patch_size', model.embeddings.patch_size)
47
+
48
+ return model
49
+
50
+ def init_resampler(self, embed_dim, vision_dim):
51
+ return Resampler(
52
+ num_queries=self.config.query_num,
53
+ embed_dim=embed_dim,
54
+ num_heads=embed_dim // 128,
55
+ kv_dim=vision_dim,
56
+ adaptive=True
57
+ )
58
+
59
+ def get_input_embeddings(self):
60
+ return self.llm.get_input_embeddings()
61
+
62
+ def set_input_embeddings(self, value):
63
+ self.llm.embed_tokens = value
64
+
65
+ def get_output_embeddings(self):
66
+ return self.llm.lm_head
67
+
68
+ def set_output_embeddings(self, new_embeddings):
69
+ self.llm.lm_head = new_embeddings
70
+
71
+ def set_decoder(self, decoder):
72
+ self.llm = decoder
73
+
74
+ def get_decoder(self):
75
+ return self.llm
76
+
77
+ def get_vllm_embedding(self, data):
78
+ if 'vision_hidden_states' not in data:
79
+ dtype = self.llm.model.embed_tokens.weight.dtype
80
+ device = self.llm.model.embed_tokens.weight.device
81
+ tgt_sizes = data['tgt_sizes']
82
+ pixel_values_list = data['pixel_values']
83
+ vision_hidden_states = []
84
+ all_pixel_values = []
85
+ img_cnt = []
86
+ for pixel_values in pixel_values_list:
87
+ img_cnt.append(len(pixel_values))
88
+ all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
89
+
90
+ # exist image
91
+ if all_pixel_values:
92
+ tgt_sizes = [tgt_size for tgt_size in tgt_sizes if isinstance(tgt_size, torch.Tensor)]
93
+ tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
94
+
95
+ if self.config.batch_vision_input:
96
+ max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
97
+
98
+ all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
99
+ padding_value=0.0)
100
+ B, L, _ = all_pixel_values.shape
101
+ all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
102
+
103
+ patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
104
+ for i in range(B):
105
+ patch_attn_mask[i, 0, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
106
+
107
+ vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask, tgt_sizes=tgt_sizes).last_hidden_state
108
+ vision_embedding = self.resampler(vision_embedding, tgt_sizes)
109
+ else:
110
+ # get vision_embedding foreach
111
+ vision_embedding = []
112
+ for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values):
113
+ single_pixel_values = single_pixel_values.unsqueeze(0)
114
+ B, L, _ = single_pixel_values.shape
115
+ single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
116
+ single_vision_embedding = self.vpm(single_pixel_values.type(dtype), tgt_sizes=single_tgt_size.unsqueeze(0)).last_hidden_state
117
+ single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
118
+ vision_embedding.append(single_vision_embedding)
119
+ vision_embedding = torch.vstack(vision_embedding)
120
+
121
+ start = 0
122
+ for pixel_values in pixel_values_list:
123
+ img_cnt = len(pixel_values)
124
+ if img_cnt > 0:
125
+ vision_hidden_states.append(vision_embedding[start: start + img_cnt])
126
+ start += img_cnt
127
+ else:
128
+ vision_hidden_states.append([])
129
+ else: # no image
130
+ if self.training:
131
+ dummy_image = torch.zeros(
132
+ (1, 3, 224, 224),
133
+ device=device, dtype=dtype
134
+ )
135
+ tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
136
+ dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
137
+ else:
138
+ dummy_feature = []
139
+ for _ in range(len(pixel_values_list)):
140
+ vision_hidden_states.append(dummy_feature)
141
+
142
+ else:
143
+ vision_hidden_states = data['vision_hidden_states']
144
+
145
+ if hasattr(self.llm.config, 'scale_emb'):
146
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
147
+ else:
148
+ vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
149
+
150
+ vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
151
+ i, torch.Tensor) else i for i in vision_hidden_states]
152
+
153
+ bs = len(data['input_ids'])
154
+ for i in range(bs):
155
+ cur_vs_hs = vision_hidden_states[i]
156
+ if len(cur_vs_hs) > 0:
157
+ cur_vllm_emb = vllm_embedding[i]
158
+ cur_image_bound = data['image_bound'][i]
159
+ if len(cur_image_bound) > 0:
160
+ image_indices = torch.stack(
161
+ [torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
162
+ ).to(vllm_embedding.device)
163
+
164
+ cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
165
+ cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
166
+ elif self.training:
167
+ cur_vllm_emb += cur_vs_hs[0].mean() * 0
168
+
169
+ return vllm_embedding, vision_hidden_states
170
+
171
+ def forward(self, data, **kwargs):
172
+ vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
173
+ position_ids = data["position_ids"]
174
+ if position_ids.dtype != torch.int64:
175
+ position_ids = position_ids.long()
176
+
177
+ return self.llm(
178
+ input_ids=None,
179
+ position_ids=position_ids,
180
+ inputs_embeds=vllm_embedding,
181
+ **kwargs
182
+ )
183
+
184
+ def _decode(self, inputs_embeds, tokenizer, attention_mask, decode_text=False, **kwargs):
185
+ terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
186
+ output = self.llm.generate(
187
+ inputs_embeds=inputs_embeds,
188
+ pad_token_id=0,
189
+ eos_token_id=terminators,
190
+ attention_mask=attention_mask,
191
+ **kwargs
192
+ )
193
+ if decode_text:
194
+ return self._decode_text(output, tokenizer)
195
+ return output
196
+
197
+ def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
198
+ terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
199
+ streamer = TextIteratorStreamer(tokenizer=tokenizer)
200
+ generation_kwargs = {
201
+ 'inputs_embeds': inputs_embeds,
202
+ 'pad_token_id': 0,
203
+ 'eos_token_id': terminators,
204
+ 'streamer': streamer
205
+ }
206
+ generation_kwargs.update(kwargs)
207
+
208
+ thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
209
+ thread.start()
210
+
211
+ return streamer
212
+
213
+ def _decode_text(self, result_ids, tokenizer):
214
+ terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
215
+ result_text = []
216
+ for result in result_ids:
217
+ result = result[result != 0]
218
+ if result[0] == tokenizer.bos_id:
219
+ result = result[1:]
220
+ if result[-1] in terminators:
221
+ result = result[:-1]
222
+ result_text.append(tokenizer.decode(result).strip())
223
+ return result_text
224
+
225
+ def generate(
226
+ self,
227
+ input_ids=None,
228
+ pixel_values=None,
229
+ tgt_sizes=None,
230
+ image_bound=None,
231
+ attention_mask=None,
232
+ tokenizer=None,
233
+ vision_hidden_states=None,
234
+ return_vision_hidden_states=False,
235
+ stream=False,
236
+ decode_text=False,
237
+ **kwargs
238
+ ):
239
+ assert input_ids is not None
240
+ assert len(input_ids) == len(pixel_values)
241
+
242
+ model_inputs = {
243
+ "input_ids": input_ids,
244
+ "image_bound": image_bound,
245
+ }
246
+
247
+ if vision_hidden_states is None:
248
+ model_inputs["pixel_values"] = pixel_values
249
+ model_inputs['tgt_sizes'] = tgt_sizes
250
+ else:
251
+ model_inputs["vision_hidden_states"] = vision_hidden_states
252
+
253
+ with torch.inference_mode():
254
+ (
255
+ model_inputs["inputs_embeds"],
256
+ vision_hidden_states,
257
+ ) = self.get_vllm_embedding(model_inputs)
258
+
259
+ if stream:
260
+ result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
261
+ else:
262
+ result = self._decode(model_inputs["inputs_embeds"], tokenizer, attention_mask, decode_text=decode_text, **kwargs)
263
+
264
+ if return_vision_hidden_states:
265
+ return result, vision_hidden_states
266
+
267
+ return result
268
+
269
+ def chat(
270
+ self,
271
+ image,
272
+ msgs,
273
+ tokenizer,
274
+ processor=None,
275
+ vision_hidden_states=None,
276
+ max_new_tokens=1024,
277
+ min_new_tokens=0,
278
+ sampling=True,
279
+ max_inp_length=8192,
280
+ system_prompt='',
281
+ stream=False,
282
+ max_slice_nums=None,
283
+ use_image_id=None,
284
+ **kwargs
285
+ ):
286
+ if isinstance(msgs[0], list):
287
+ batched = True
288
+ else:
289
+ batched = False
290
+ msgs_list = msgs
291
+ images_list = image
292
+
293
+ if batched is False:
294
+ images_list, msgs_list = [images_list], [msgs_list]
295
+ assert len(images_list) == len(msgs_list), "The batch dim of images_list and msgs_list should be the same."
296
+
297
+ if processor is None:
298
+ if self.processor is None:
299
+ self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
300
+ processor = self.processor
301
+
302
+ assert self.config.query_num == processor.image_processor.image_feature_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
303
+ assert self.config.patch_size == processor.image_processor.patch_size, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
304
+ assert self.config.use_image_id == processor.image_processor.use_image_id, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
305
+ assert self.config.slice_config.max_slice_nums == processor.image_processor.max_slice_nums, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
306
+ assert self.config.slice_mode == processor.image_processor.slice_mode, "These two values should be the same. Check `config.json` and `preprocessor_config.json`."
307
+
308
+ prompts_lists = []
309
+ input_images_lists = []
310
+ for image, msgs in zip(images_list, msgs_list):
311
+ if isinstance(msgs, str):
312
+ msgs = json.loads(msgs)
313
+ copy_msgs = deepcopy(msgs)
314
+
315
+ assert len(msgs) > 0, "msgs is empty"
316
+ assert sampling or not stream, "if use stream mode, make sure sampling=True"
317
+
318
+ if image is not None and isinstance(copy_msgs[0]["content"], str):
319
+ copy_msgs[0]["content"] = [image, copy_msgs[0]["content"]]
320
+
321
+ images = []
322
+ for i, msg in enumerate(copy_msgs):
323
+ role = msg["role"]
324
+ content = msg["content"]
325
+ assert role in ["user", "assistant"]
326
+ if i == 0:
327
+ assert role == "user", "The role of first msg should be user"
328
+ if isinstance(content, str):
329
+ content = [content]
330
+ cur_msgs = []
331
+ for c in content:
332
+ if isinstance(c, Image.Image):
333
+ images.append(c)
334
+ cur_msgs.append("(<image>./</image>)")
335
+ elif isinstance(c, str):
336
+ cur_msgs.append(c)
337
+ msg["content"] = "\n".join(cur_msgs)
338
+
339
+ if system_prompt:
340
+ sys_msg = {'role': 'system', 'content': system_prompt}
341
+ copy_msgs = [sys_msg] + copy_msgs
342
+
343
+ prompts_lists.append(processor.tokenizer.apply_chat_template(copy_msgs, tokenize=False, add_generation_prompt=True))
344
+ input_images_lists.append(images)
345
+
346
+ inputs = processor(
347
+ prompts_lists,
348
+ input_images_lists,
349
+ max_slice_nums=max_slice_nums,
350
+ use_image_id=use_image_id,
351
+ return_tensors="pt",
352
+ max_length=max_inp_length
353
+ ).to(self.device)
354
+
355
+ if sampling:
356
+ generation_config = {
357
+ "top_p": 0.8,
358
+ "top_k": 100,
359
+ "temperature": 0.7,
360
+ "do_sample": True,
361
+ "repetition_penalty": 1.05
362
+ }
363
+ else:
364
+ generation_config = {
365
+ "num_beams": 3,
366
+ "repetition_penalty": 1.2,
367
+ }
368
+
369
+ if min_new_tokens > 0:
370
+ generation_config['min_new_tokens'] = min_new_tokens
371
+
372
+ generation_config.update(
373
+ (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
374
+ )
375
+
376
+ inputs.pop("image_sizes")
377
+ with torch.inference_mode():
378
+ res = self.generate(
379
+ **inputs,
380
+ tokenizer=tokenizer,
381
+ max_new_tokens=max_new_tokens,
382
+ vision_hidden_states=vision_hidden_states,
383
+ stream=stream,
384
+ decode_text=True,
385
+ **generation_config
386
+ )
387
+
388
+ if stream:
389
+ def stream_gen():
390
+ for text in res:
391
+ for term in self.terminators:
392
+ text = text.replace(term, '')
393
+ yield text
394
+ return stream_gen()
395
+
396
+ else:
397
+ if batched:
398
+ answer = res
399
+ else:
400
+ answer = res[0]
401
+ return answer
modeling_navit_siglip.py ADDED
@@ -0,0 +1,937 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch Siglip model. """
16
+ # Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
17
+
18
+
19
+ import os
20
+ import math
21
+ import warnings
22
+ from dataclasses import dataclass
23
+ from typing import Any, Optional, Tuple, Union
24
+
25
+ import numpy as np
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torch.utils.checkpoint
29
+ from torch import nn
30
+ from torch.nn.init import _calculate_fan_in_and_fan_out
31
+
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
34
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.configuration_utils import PretrainedConfig
37
+ from transformers.utils import (
38
+ ModelOutput,
39
+ add_start_docstrings,
40
+ add_start_docstrings_to_model_forward,
41
+ is_flash_attn_2_available,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from transformers.utils import logging
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+ class SiglipVisionConfig(PretrainedConfig):
50
+ r"""
51
+ This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
52
+ Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
53
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
54
+ [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
55
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
56
+ documentation from [`PretrainedConfig`] for more information.
57
+ Args:
58
+ hidden_size (`int`, *optional*, defaults to 768):
59
+ Dimensionality of the encoder layers and the pooler layer.
60
+ intermediate_size (`int`, *optional*, defaults to 3072):
61
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
62
+ num_hidden_layers (`int`, *optional*, defaults to 12):
63
+ Number of hidden layers in the Transformer encoder.
64
+ num_attention_heads (`int`, *optional*, defaults to 12):
65
+ Number of attention heads for each attention layer in the Transformer encoder.
66
+ num_channels (`int`, *optional*, defaults to 3):
67
+ Number of channels in the input images.
68
+ image_size (`int`, *optional*, defaults to 224):
69
+ The size (resolution) of each image.
70
+ patch_size (`int`, *optional*, defaults to 16):
71
+ The size (resolution) of each patch.
72
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
73
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
74
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
75
+ layer_norm_eps (`float`, *optional*, defaults to 1e-06):
76
+ The epsilon used by the layer normalization layers.
77
+ attention_dropout (`float`, *optional*, defaults to 0.0):
78
+ The dropout ratio for the attention probabilities.
79
+ Example:
80
+ ```python
81
+ >>> from transformers import SiglipVisionConfig, SiglipVisionModel
82
+ >>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
83
+ >>> configuration = SiglipVisionConfig()
84
+ >>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
85
+ >>> model = SiglipVisionModel(configuration)
86
+ >>> # Accessing the model configuration
87
+ >>> configuration = model.config
88
+ ```"""
89
+
90
+ model_type = "siglip_vision_model"
91
+
92
+ def __init__(
93
+ self,
94
+ hidden_size=768,
95
+ intermediate_size=3072,
96
+ num_hidden_layers=12,
97
+ num_attention_heads=12,
98
+ num_channels=3,
99
+ image_size=224,
100
+ patch_size=16,
101
+ hidden_act="gelu_pytorch_tanh",
102
+ layer_norm_eps=1e-6,
103
+ attention_dropout=0.0,
104
+ **kwargs,
105
+ ):
106
+ super().__init__(**kwargs)
107
+
108
+ self.hidden_size = hidden_size
109
+ self.intermediate_size = intermediate_size
110
+ self.num_hidden_layers = num_hidden_layers
111
+ self.num_attention_heads = num_attention_heads
112
+ self.num_channels = num_channels
113
+ self.patch_size = patch_size
114
+ self.image_size = image_size
115
+ self.attention_dropout = attention_dropout
116
+ self.layer_norm_eps = layer_norm_eps
117
+ self.hidden_act = hidden_act
118
+
119
+ @classmethod
120
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
121
+ cls._set_token_in_kwargs(kwargs)
122
+
123
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
124
+
125
+ # get the vision config dict if we are loading from SiglipConfig
126
+ if config_dict.get("model_type") == "siglip":
127
+ config_dict = config_dict["vision_config"]
128
+
129
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
130
+ logger.warning(
131
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
132
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
133
+ )
134
+
135
+ return cls.from_dict(config_dict, **kwargs)
136
+
137
+
138
+ _CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
139
+
140
+ SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
141
+ "google/siglip-base-patch16-224",
142
+ # See all SigLIP models at https://huggingface.co/models?filter=siglip
143
+ ]
144
+
145
+ if is_flash_attn_2_available():
146
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
147
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
148
+
149
+
150
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
151
+ def _get_unpad_data(attention_mask):
152
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
153
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
154
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
155
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
156
+ return (
157
+ indices,
158
+ cu_seqlens,
159
+ max_seqlen_in_batch,
160
+ )
161
+
162
+
163
+ def _trunc_normal_(tensor, mean, std, a, b):
164
+ # Cut & paste from PyTorch official master until it's in a few official releases - RW
165
+ # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
166
+ def norm_cdf(x):
167
+ # Computes standard normal cumulative distribution function
168
+ return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
169
+
170
+ if (mean < a - 2 * std) or (mean > b + 2 * std):
171
+ warnings.warn(
172
+ "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
173
+ "The distribution of values may be incorrect.",
174
+ stacklevel=2,
175
+ )
176
+
177
+ # Values are generated by using a truncated uniform distribution and
178
+ # then using the inverse CDF for the normal distribution.
179
+ # Get upper and lower cdf values
180
+ l = norm_cdf((a - mean) / std)
181
+ u = norm_cdf((b - mean) / std)
182
+
183
+ # Uniformly fill tensor with values from [l, u], then translate to
184
+ # [2l-1, 2u-1].
185
+ tensor.uniform_(2 * l - 1, 2 * u - 1)
186
+
187
+ # Use inverse cdf transform for normal distribution to get truncated
188
+ # standard normal
189
+ if tensor.dtype in [torch.float16, torch.bfloat16]:
190
+ # The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
191
+ og_dtype = tensor.dtype
192
+ tensor = tensor.to(torch.float32)
193
+ tensor.erfinv_()
194
+ tensor = tensor.to(og_dtype)
195
+ else:
196
+ tensor.erfinv_()
197
+
198
+ # Transform to proper mean, std
199
+ tensor.mul_(std * math.sqrt(2.0))
200
+ tensor.add_(mean)
201
+
202
+ # Clamp to ensure it's in the proper range
203
+ if tensor.dtype == torch.float16:
204
+ # The `clamp_` op is not (yet?) defined in float16+cpu
205
+ tensor = tensor.to(torch.float32)
206
+ tensor.clamp_(min=a, max=b)
207
+ tensor = tensor.to(torch.float16)
208
+ else:
209
+ tensor.clamp_(min=a, max=b)
210
+
211
+
212
+ def trunc_normal_tf_(
213
+ tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
214
+ ) -> torch.Tensor:
215
+ """Fills the input Tensor with values drawn from a truncated
216
+ normal distribution. The values are effectively drawn from the
217
+ normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
218
+ with values outside :math:`[a, b]` redrawn until they are within
219
+ the bounds. The method used for generating the random values works
220
+ best when :math:`a \\leq \text{mean} \\leq b`.
221
+ NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
222
+ bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
223
+ and the result is subsquently scaled and shifted by the mean and std args.
224
+ Args:
225
+ tensor: an n-dimensional `torch.Tensor`
226
+ mean: the mean of the normal distribution
227
+ std: the standard deviation of the normal distribution
228
+ a: the minimum cutoff value
229
+ b: the maximum cutoff value
230
+ """
231
+ with torch.no_grad():
232
+ _trunc_normal_(tensor, 0, 1.0, a, b)
233
+ tensor.mul_(std).add_(mean)
234
+
235
+
236
+ def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
237
+ fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
238
+ if mode == "fan_in":
239
+ denom = fan_in
240
+ elif mode == "fan_out":
241
+ denom = fan_out
242
+ elif mode == "fan_avg":
243
+ denom = (fan_in + fan_out) / 2
244
+
245
+ variance = scale / denom
246
+
247
+ if distribution == "truncated_normal":
248
+ # constant is stddev of standard normal truncated to (-2, 2)
249
+ trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
250
+ elif distribution == "normal":
251
+ with torch.no_grad():
252
+ tensor.normal_(std=math.sqrt(variance))
253
+ elif distribution == "uniform":
254
+ bound = math.sqrt(3 * variance)
255
+ with torch.no_grad():
256
+ tensor.uniform_(-bound, bound)
257
+ else:
258
+ raise ValueError(f"invalid distribution {distribution}")
259
+
260
+
261
+ def lecun_normal_(tensor):
262
+ variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
263
+
264
+
265
+ def default_flax_embed_init(tensor):
266
+ variance_scaling_(tensor, mode="fan_in", distribution="normal")
267
+
268
+
269
+ @dataclass
270
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
271
+ class SiglipVisionModelOutput(ModelOutput):
272
+ """
273
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
274
+ Args:
275
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
276
+ The image embeddings obtained by applying the projection layer to the pooler_output.
277
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
278
+ Sequence of hidden-states at the output of the last layer of the model.
279
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
280
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
281
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
282
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
283
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
284
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
285
+ sequence_length)`.
286
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
287
+ heads.
288
+ """
289
+
290
+ image_embeds: Optional[torch.FloatTensor] = None
291
+ last_hidden_state: torch.FloatTensor = None
292
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
293
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
294
+
295
+
296
+ class SiglipVisionEmbeddings(nn.Module):
297
+ def __init__(self, config: SiglipVisionConfig):
298
+ super().__init__()
299
+ self.config = config
300
+ self.embed_dim = config.hidden_size
301
+ self.image_size = config.image_size
302
+ self.patch_size = config.patch_size
303
+
304
+ self.patch_embedding = nn.Conv2d(
305
+ in_channels=config.num_channels,
306
+ out_channels=self.embed_dim,
307
+ kernel_size=self.patch_size,
308
+ stride=self.patch_size,
309
+ padding="valid",
310
+ )
311
+
312
+ self.num_patches_per_side = self.image_size // self.patch_size
313
+ self.num_patches = self.num_patches_per_side**2
314
+ self.num_positions = self.num_patches
315
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
316
+
317
+ def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor, tgt_sizes: Optional[torch.IntTensor]=None) -> torch.Tensor:
318
+ batch_size = pixel_values.size(0)
319
+
320
+ patch_embeds = self.patch_embedding(pixel_values)
321
+ embeddings = patch_embeds.flatten(2).transpose(1, 2)
322
+
323
+ max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
324
+ max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
325
+ boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
326
+ position_ids = torch.full(
327
+ size=(
328
+ batch_size,
329
+ max_nb_patches_h * max_nb_patches_w,
330
+ ),
331
+ fill_value=0,
332
+ )
333
+
334
+ for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
335
+ if tgt_sizes is not None:
336
+ nb_patches_h = tgt_sizes[batch_idx][0]
337
+ nb_patches_w = tgt_sizes[batch_idx][1]
338
+ else:
339
+ nb_patches_h = p_attn_mask[:, 0].sum()
340
+ nb_patches_w = p_attn_mask[0].sum()
341
+
342
+ fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
343
+ fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
344
+
345
+ bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
346
+ bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
347
+
348
+ pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
349
+ position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
350
+
351
+ position_ids = position_ids.to(self.position_embedding.weight.device)
352
+
353
+ embeddings = embeddings + self.position_embedding(position_ids)
354
+ return embeddings
355
+
356
+
357
+ class SiglipAttention(nn.Module):
358
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
359
+
360
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
361
+ def __init__(self, config):
362
+ super().__init__()
363
+ self.config = config
364
+ self.embed_dim = config.hidden_size
365
+ self.num_heads = config.num_attention_heads
366
+ self.head_dim = self.embed_dim // self.num_heads
367
+ if self.head_dim * self.num_heads != self.embed_dim:
368
+ raise ValueError(
369
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
370
+ f" {self.num_heads})."
371
+ )
372
+ self.scale = self.head_dim**-0.5
373
+ self.dropout = config.attention_dropout
374
+
375
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
376
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
377
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
378
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
379
+
380
+ def forward(
381
+ self,
382
+ hidden_states: torch.Tensor,
383
+ attention_mask: Optional[torch.Tensor] = None,
384
+ output_attentions: Optional[bool] = False,
385
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
386
+ """Input shape: Batch x Time x Channel"""
387
+
388
+ batch_size, q_len, _ = hidden_states.size()
389
+
390
+ query_states = self.q_proj(hidden_states)
391
+ key_states = self.k_proj(hidden_states)
392
+ value_states = self.v_proj(hidden_states)
393
+
394
+ query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
395
+ key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
396
+ value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
397
+
398
+ k_v_seq_len = key_states.shape[-2]
399
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
400
+
401
+ if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
402
+ raise ValueError(
403
+ f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
404
+ f" {attn_weights.size()}"
405
+ )
406
+
407
+ if attention_mask is not None:
408
+ if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
409
+ raise ValueError(
410
+ f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
411
+ )
412
+ attn_weights = attn_weights + attention_mask
413
+
414
+ # upcast attention to fp32
415
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
416
+ attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
417
+ attn_output = torch.matmul(attn_weights, value_states)
418
+
419
+ if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
420
+ raise ValueError(
421
+ f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
422
+ f" {attn_output.size()}"
423
+ )
424
+
425
+ attn_output = attn_output.transpose(1, 2).contiguous()
426
+ attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
427
+
428
+ attn_output = self.out_proj(attn_output)
429
+
430
+ return attn_output, attn_weights
431
+
432
+
433
+ class SiglipFlashAttention2(SiglipAttention):
434
+ """
435
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
436
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
437
+ flash attention and deal with padding tokens in case the input contains any of them.
438
+ """
439
+
440
+ def __init__(self, *args, **kwargs):
441
+ super().__init__(*args, **kwargs)
442
+ self.is_causal = False # Hack to make sure we don't use a causal mask
443
+
444
+ def forward(
445
+ self,
446
+ hidden_states: torch.Tensor,
447
+ attention_mask: Optional[torch.LongTensor] = None,
448
+ position_ids: Optional[torch.LongTensor] = None,
449
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
450
+ output_attentions: bool = False,
451
+ use_cache: bool = False,
452
+ **kwargs,
453
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
454
+ output_attentions = False
455
+
456
+ bsz, q_len, _ = hidden_states.size()
457
+
458
+ query_states = self.q_proj(hidden_states)
459
+ key_states = self.k_proj(hidden_states)
460
+ value_states = self.v_proj(hidden_states)
461
+
462
+ # Flash attention requires the input to have the shape
463
+ # batch_size x seq_length x head_dim x hidden_dim
464
+ # therefore we just need to keep the original shape
465
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
466
+ key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
467
+ value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
468
+
469
+ kv_seq_len = key_states.shape[-2]
470
+ if past_key_value is not None:
471
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
472
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
473
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
474
+
475
+ # if past_key_value is not None:
476
+ # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
477
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
478
+
479
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
480
+ # to be able to avoid many of these transpose/reshape/view.
481
+ query_states = query_states.transpose(1, 2)
482
+ key_states = key_states.transpose(1, 2)
483
+ value_states = value_states.transpose(1, 2)
484
+
485
+ dropout_rate = self.dropout if self.training else 0.0
486
+
487
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
488
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
489
+ # cast them back in the correct dtype just to be sure everything works as expected.
490
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
491
+ # in fp32. (LlamaRMSNorm handles it correctly)
492
+
493
+ input_dtype = query_states.dtype
494
+ if input_dtype == torch.float32:
495
+ if torch.is_autocast_enabled():
496
+ target_dtype = torch.get_autocast_gpu_dtype()
497
+ # Handle the case where the model is quantized
498
+ elif hasattr(self.config, "_pre_quantization_dtype"):
499
+ target_dtype = self.config._pre_quantization_dtype
500
+ else:
501
+ target_dtype = self.q_proj.weight.dtype
502
+
503
+ logger.warning_once(
504
+ "The input hidden states seems to be silently casted in float32, this might be related to the fact"
505
+ " you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
506
+ f" {target_dtype}."
507
+ )
508
+
509
+ query_states = query_states.to(target_dtype)
510
+ key_states = key_states.to(target_dtype)
511
+ value_states = value_states.to(target_dtype)
512
+
513
+ attn_output = self._flash_attention_forward(
514
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
515
+ )
516
+
517
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
518
+ attn_output = self.out_proj(attn_output)
519
+
520
+ if not output_attentions:
521
+ attn_weights = None
522
+
523
+ return attn_output, attn_weights
524
+
525
+ def _flash_attention_forward(
526
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
527
+ ):
528
+ """
529
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
530
+ first unpad the input, then computes the attention scores and pad the final attention scores.
531
+ Args:
532
+ query_states (`torch.Tensor`):
533
+ Input query states to be passed to Flash Attention API
534
+ key_states (`torch.Tensor`):
535
+ Input key states to be passed to Flash Attention API
536
+ value_states (`torch.Tensor`):
537
+ Input value states to be passed to Flash Attention API
538
+ attention_mask (`torch.Tensor`):
539
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
540
+ position of padding tokens and 1 for the position of non-padding tokens.
541
+ dropout (`int`, *optional*):
542
+ Attention dropout
543
+ softmax_scale (`float`, *optional*):
544
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
545
+ """
546
+
547
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
548
+ causal = self.is_causal and query_length != 1
549
+
550
+ # Contains at least one padding token in the sequence
551
+ if attention_mask is not None:
552
+ batch_size = query_states.shape[0]
553
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
554
+ query_states, key_states, value_states, attention_mask, query_length
555
+ )
556
+
557
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
558
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
559
+
560
+ attn_output_unpad = flash_attn_varlen_func(
561
+ query_states,
562
+ key_states,
563
+ value_states,
564
+ cu_seqlens_q=cu_seqlens_q,
565
+ cu_seqlens_k=cu_seqlens_k,
566
+ max_seqlen_q=max_seqlen_in_batch_q,
567
+ max_seqlen_k=max_seqlen_in_batch_k,
568
+ dropout_p=dropout,
569
+ softmax_scale=softmax_scale,
570
+ causal=causal,
571
+ )
572
+
573
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
574
+ else:
575
+ attn_output = flash_attn_func(
576
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
577
+ )
578
+
579
+ return attn_output
580
+
581
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
582
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
583
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
584
+
585
+ key_layer = index_first_axis(
586
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
587
+ )
588
+ value_layer = index_first_axis(
589
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
590
+ )
591
+ if query_length == kv_seq_len:
592
+ query_layer = index_first_axis(
593
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
594
+ )
595
+ cu_seqlens_q = cu_seqlens_k
596
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
597
+ indices_q = indices_k
598
+ elif query_length == 1:
599
+ max_seqlen_in_batch_q = 1
600
+ cu_seqlens_q = torch.arange(
601
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
602
+ ) # There is a memcpy here, that is very bad.
603
+ indices_q = cu_seqlens_q[:-1]
604
+ query_layer = query_layer.squeeze(1)
605
+ else:
606
+ # The -q_len: slice assumes left padding.
607
+ attention_mask = attention_mask[:, -query_length:]
608
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
609
+
610
+ return (
611
+ query_layer,
612
+ key_layer,
613
+ value_layer,
614
+ indices_q,
615
+ (cu_seqlens_q, cu_seqlens_k),
616
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
617
+ )
618
+
619
+
620
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
621
+ class SiglipMLP(nn.Module):
622
+ def __init__(self, config):
623
+ super().__init__()
624
+ self.config = config
625
+ self.activation_fn = ACT2FN[config.hidden_act]
626
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
627
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
628
+
629
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
630
+ hidden_states = self.fc1(hidden_states)
631
+ hidden_states = self.activation_fn(hidden_states)
632
+ hidden_states = self.fc2(hidden_states)
633
+ return hidden_states
634
+
635
+
636
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
637
+ class SiglipEncoderLayer(nn.Module):
638
+ def __init__(self, config: SiglipVisionConfig):
639
+ super().__init__()
640
+ self.embed_dim = config.hidden_size
641
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
642
+ self.self_attn = (
643
+ SiglipAttention(config)
644
+ if not self._use_flash_attention_2
645
+ else SiglipFlashAttention2(config)
646
+ )
647
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
648
+ self.mlp = SiglipMLP(config)
649
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
650
+
651
+ def forward(
652
+ self,
653
+ hidden_states: torch.Tensor,
654
+ attention_mask: torch.Tensor,
655
+ output_attentions: Optional[bool] = False,
656
+ ) -> Tuple[torch.FloatTensor]:
657
+ """
658
+ Args:
659
+ hidden_states (`torch.FloatTensor`):
660
+ Input to the layer of shape `(batch, seq_len, embed_dim)`.
661
+ attention_mask (`torch.FloatTensor`):
662
+ Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
663
+ output_attentions (`bool`, *optional*, defaults to `False`):
664
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
665
+ returned tensors for more detail.
666
+ """
667
+ residual = hidden_states
668
+
669
+ hidden_states = self.layer_norm1(hidden_states)
670
+ hidden_states, attn_weights = self.self_attn(
671
+ hidden_states=hidden_states,
672
+ attention_mask=attention_mask,
673
+ output_attentions=output_attentions,
674
+ )
675
+ hidden_states = residual + hidden_states
676
+
677
+ residual = hidden_states
678
+ hidden_states = self.layer_norm2(hidden_states)
679
+ hidden_states = self.mlp(hidden_states)
680
+ hidden_states = residual + hidden_states
681
+
682
+ outputs = (hidden_states,)
683
+
684
+ if output_attentions:
685
+ outputs += (attn_weights,)
686
+
687
+ return outputs
688
+
689
+
690
+ class SiglipPreTrainedModel(PreTrainedModel):
691
+ """
692
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
693
+ models.
694
+ """
695
+
696
+ config_class = SiglipVisionConfig
697
+ base_model_prefix = "siglip"
698
+ supports_gradient_checkpointing = True
699
+
700
+ def _init_weights(self, module):
701
+ """Initialize the weights"""
702
+
703
+ if isinstance(module, SiglipVisionEmbeddings):
704
+ width = self.config.hidden_size
705
+ nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
706
+ elif isinstance(module, nn.Embedding):
707
+ default_flax_embed_init(module.weight)
708
+ elif isinstance(module, SiglipAttention):
709
+ nn.init.normal_(module.q_proj.weight)
710
+ nn.init.normal_(module.k_proj.weight)
711
+ nn.init.normal_(module.v_proj.weight)
712
+ nn.init.normal_(module.out_proj.weight)
713
+ nn.init.zeros_(module.q_proj.bias)
714
+ nn.init.zeros_(module.k_proj.bias)
715
+ nn.init.zeros_(module.v_proj.bias)
716
+ nn.init.zeros_(module.out_proj.bias)
717
+ elif isinstance(module, SiglipMLP):
718
+ nn.init.normal_(module.fc1.weight)
719
+ nn.init.normal_(module.fc2.weight)
720
+ nn.init.normal_(module.fc1.bias, std=1e-6)
721
+ nn.init.normal_(module.fc2.bias, std=1e-6)
722
+ elif isinstance(module, (nn.Linear, nn.Conv2d)):
723
+ lecun_normal_(module.weight)
724
+ if module.bias is not None:
725
+ nn.init.zeros_(module.bias)
726
+ elif isinstance(module, nn.LayerNorm):
727
+ module.bias.data.zero_()
728
+ module.weight.data.fill_(1.0)
729
+
730
+
731
+ SIGLIP_START_DOCSTRING = r"""
732
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
733
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
734
+ etc.)
735
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
736
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
737
+ and behavior.
738
+ Parameters:
739
+ config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
740
+ Initializing with a config file does not load the weights associated with the model, only the
741
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
742
+ """
743
+
744
+
745
+ SIGLIP_VISION_INPUTS_DOCSTRING = r"""
746
+ Args:
747
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
748
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
749
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
750
+ output_attentions (`bool`, *optional*):
751
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
752
+ tensors for more detail.
753
+ output_hidden_states (`bool`, *optional*):
754
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
755
+ more detail.
756
+ return_dict (`bool`, *optional*):
757
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
758
+ """
759
+
760
+
761
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
762
+ class SiglipEncoder(nn.Module):
763
+ """
764
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
765
+ [`SiglipEncoderLayer`].
766
+ Args:
767
+ config: SiglipConfig
768
+ """
769
+
770
+ def __init__(self, config: SiglipVisionConfig):
771
+ super().__init__()
772
+ self.config = config
773
+ self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
774
+ self.gradient_checkpointing = False
775
+
776
+ # Ignore copy
777
+ def forward(
778
+ self,
779
+ inputs_embeds,
780
+ attention_mask: Optional[torch.Tensor] = None,
781
+ output_attentions: Optional[bool] = None,
782
+ output_hidden_states: Optional[bool] = None,
783
+ return_dict: Optional[bool] = None,
784
+ ) -> Union[Tuple, BaseModelOutput]:
785
+ r"""
786
+ Args:
787
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
788
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
789
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
790
+ than the model's internal embedding lookup matrix.
791
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
792
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
793
+ - 1 for tokens that are **not masked**,
794
+ - 0 for tokens that are **masked**.
795
+ [What are attention masks?](../glossary#attention-mask)
796
+ output_attentions (`bool`, *optional*):
797
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
798
+ returned tensors for more detail.
799
+ output_hidden_states (`bool`, *optional*):
800
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
801
+ for more detail.
802
+ return_dict (`bool`, *optional*):
803
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
804
+ """
805
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
806
+ output_hidden_states = (
807
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
808
+ )
809
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
810
+
811
+ encoder_states = () if output_hidden_states else None
812
+ all_attentions = () if output_attentions else None
813
+
814
+ hidden_states = inputs_embeds
815
+ for encoder_layer in self.layers:
816
+ if output_hidden_states:
817
+ encoder_states = encoder_states + (hidden_states,)
818
+ if self.gradient_checkpointing and self.training:
819
+ layer_outputs = self._gradient_checkpointing_func(
820
+ encoder_layer.__call__,
821
+ hidden_states,
822
+ attention_mask,
823
+ output_attentions,
824
+ )
825
+ else:
826
+ layer_outputs = encoder_layer(
827
+ hidden_states,
828
+ attention_mask,
829
+ output_attentions=output_attentions,
830
+ )
831
+
832
+ hidden_states = layer_outputs[0]
833
+
834
+ if output_attentions:
835
+ all_attentions = all_attentions + (layer_outputs[1],)
836
+
837
+ if output_hidden_states:
838
+ encoder_states = encoder_states + (hidden_states,)
839
+
840
+ if not return_dict:
841
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
842
+ return BaseModelOutput(
843
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
844
+ )
845
+
846
+ @add_start_docstrings(
847
+ """The vision model from SigLIP without any head or projection on top.""",
848
+ SIGLIP_START_DOCSTRING
849
+ )
850
+ class SiglipVisionTransformer(SiglipPreTrainedModel):
851
+ config_class = SiglipVisionConfig
852
+ main_input_name = "pixel_values"
853
+ _supports_flash_attn_2 = True
854
+
855
+ def __init__(self, config: SiglipVisionConfig):
856
+ super().__init__(config)
857
+ self.config = config
858
+ embed_dim = config.hidden_size
859
+
860
+ self.embeddings = SiglipVisionEmbeddings(config)
861
+ self.encoder = SiglipEncoder(config)
862
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
863
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
864
+
865
+ # Initialize weights and apply final processing
866
+ self.post_init()
867
+
868
+ def get_input_embeddings(self) -> nn.Module:
869
+ return self.embeddings.patch_embedding
870
+
871
+ @add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
872
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
873
+ def forward(
874
+ self,
875
+ pixel_values,
876
+ patch_attention_mask: Optional[torch.BoolTensor] = None,
877
+ tgt_sizes: Optional[torch.IntTensor] = None,
878
+ output_attentions: Optional[bool] = None,
879
+ output_hidden_states: Optional[bool] = None,
880
+ return_dict: Optional[bool] = None,
881
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
882
+ r"""
883
+ Returns:
884
+ """
885
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
886
+ output_hidden_states = (
887
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
888
+ )
889
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
890
+
891
+ batch_size = pixel_values.size(0)
892
+ if patch_attention_mask is None:
893
+ patch_attention_mask = torch.ones(
894
+ size=(
895
+ batch_size,
896
+ pixel_values.size(2) // self.config.patch_size,
897
+ pixel_values.size(3) // self.config.patch_size,
898
+ ),
899
+ dtype=torch.bool,
900
+ device=pixel_values.device,
901
+ )
902
+
903
+ hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask, tgt_sizes=tgt_sizes)
904
+
905
+ patch_attention_mask = patch_attention_mask.view(batch_size, -1)
906
+ # The call to `_upad_input` in `_flash_attention_forward` is expensive
907
+ # So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
908
+ # avoiding passing the attention_mask, which is equivalent to attending to the full sequence
909
+ if not torch.any(~patch_attention_mask):
910
+ attention_mask=None
911
+ else:
912
+ attention_mask = (
913
+ _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
914
+ if not self._use_flash_attention_2
915
+ else patch_attention_mask
916
+ )
917
+
918
+ encoder_outputs = self.encoder(
919
+ inputs_embeds=hidden_states,
920
+ attention_mask=attention_mask,
921
+ output_attentions=output_attentions,
922
+ output_hidden_states=output_hidden_states,
923
+ return_dict=return_dict,
924
+ )
925
+
926
+ last_hidden_state = encoder_outputs[0]
927
+ last_hidden_state = self.post_layernorm(last_hidden_state)
928
+
929
+ if not return_dict:
930
+ return (last_hidden_state, None) + encoder_outputs[1:]
931
+
932
+ return BaseModelOutputWithPooling(
933
+ last_hidden_state=last_hidden_state,
934
+ pooler_output=None,
935
+ hidden_states=encoder_outputs.hidden_states,
936
+ attentions=encoder_outputs.attentions,
937
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "image_processor_type": "MiniCPMVImageProcessor",
3
+ "auto_map": {
4
+ "AutoProcessor": "processing_minicpmv.MiniCPMVProcessor",
5
+ "AutoImageProcessor": "image_processing_minicpmv.MiniCPMVImageProcessor"
6
+ },
7
+ "processor_class": "MiniCPMVProcessor",
8
+ "max_slice_nums": 9,
9
+ "scale_resolution": 448,
10
+ "patch_size": 14,
11
+ "use_image_id": true,
12
+ "image_feature_size": 64,
13
+ "im_start": "<image>",
14
+ "im_end": "</image>",
15
+ "slice_start": "<slice>",
16
+ "slice_end": "</slice>",
17
+ "unk": "<unk>",
18
+ "im_id_start": "<image_id>",
19
+ "im_id_end": "</image_id>",
20
+ "slice_mode": true,
21
+ "norm_mean": [0.5, 0.5, 0.5],
22
+ "norm_std": [0.5, 0.5, 0.5],
23
+ "version": 2.6
24
+ }
processing_minicpmv.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for MiniCPMV.
17
+ """
18
+
19
+ from typing import List, Optional, Union, Dict, Any
20
+ import torch
21
+ import re
22
+
23
+ from transformers.image_processing_utils import BatchFeature
24
+ from transformers.image_utils import ImageInput
25
+ from transformers.processing_utils import ProcessorMixin
26
+ from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
27
+ from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
28
+
29
+ from .image_processing_minicpmv import MiniCPMVBatchFeature
30
+
31
+
32
+ class MiniCPMVProcessor(ProcessorMixin):
33
+ r"""
34
+ Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
35
+
36
+ [`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
37
+ [`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
38
+
39
+ Args:
40
+ image_processor ([`MiniCPMVImageProcessor`], *optional*):
41
+ The image processor is a required input.
42
+ tokenizer ([`LlamaTokenizerWrapper`], *optional*):
43
+ The tokenizer is a required input.
44
+ """
45
+ attributes = ["image_processor", "tokenizer"]
46
+ image_processor_class = "AutoImageProcessor"
47
+ tokenizer_class = "AutoTokenizer"
48
+
49
+ def __init__(self, image_processor=None, tokenizer=None):
50
+ super().__init__(image_processor, tokenizer)
51
+ self.version = image_processor.version
52
+
53
+ def __call__(
54
+ self,
55
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
56
+ images: ImageInput = None,
57
+ max_length: Optional[int] = None,
58
+ do_pad: Optional[bool] = True,
59
+ max_slice_nums: int = None,
60
+ use_image_id: bool = None,
61
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
62
+ ) -> MiniCPMVBatchFeature:
63
+
64
+ if images is not None:
65
+ image_inputs = self.image_processor(images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors)
66
+ return self._convert_images_texts_to_inputs(image_inputs, text, max_slice_nums=max_slice_nums, use_image_id=use_image_id, max_length=max_length)
67
+
68
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
69
+ def batch_decode(self, *args, **kwargs):
70
+ """
71
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
72
+ refer to the docstring of this method for more information.
73
+ """
74
+ output_ids = args[0]
75
+ result_text = []
76
+ for result in output_ids:
77
+ result = result[result != 0]
78
+ if result[0] == self.tokenizer.bos_id:
79
+ result = result[1:]
80
+ if result[-1] == self.tokenizer.eos_id:
81
+ result = result[:-1]
82
+ result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
83
+ return result_text
84
+ # return self.tokenizer.batch_decode(*args, **kwargs)
85
+
86
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
87
+ def decode(self, *args, **kwargs):
88
+ """
89
+ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
90
+ the docstring of this method for more information.
91
+ """
92
+ result = args[0]
93
+ result = result[result != 0]
94
+ if result[0] == self.tokenizer.bos_id:
95
+ result = result[1:]
96
+ if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
97
+ result = result[:-1]
98
+ return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
99
+
100
+ def _convert(
101
+ self, input_str, max_inp_length: Optional[int] = None
102
+ ):
103
+ if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False):
104
+ input_ids = self.tokenizer.encode(input_str)
105
+ else:
106
+ input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
107
+ if max_inp_length is not None:
108
+ input_ids = input_ids[:max_inp_length]
109
+ input_ids = torch.tensor(input_ids, dtype=torch.int32)
110
+
111
+ start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
112
+ end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
113
+
114
+ image_start_tokens = torch.where(start_cond)[0]
115
+ image_start_tokens += 1
116
+ image_end_tokens = torch.where(end_cond)[0]
117
+
118
+ valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
119
+
120
+ image_bounds = torch.hstack(
121
+ [
122
+ image_start_tokens[:valid_image_nums].unsqueeze(-1),
123
+ image_end_tokens[:valid_image_nums].unsqueeze(-1),
124
+ ]
125
+ )
126
+ return input_ids, image_bounds
127
+
128
+ def _convert_images_texts_to_inputs(
129
+ self,
130
+ images,
131
+ texts: Union[str, List[str]],
132
+ truncation=None,
133
+ max_length=None,
134
+ max_slice_nums=None,
135
+ use_image_id=None,
136
+ return_tensors=None
137
+ ):
138
+ if images is None or not len(images):
139
+ model_inputs = self.tokenizer(texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length)
140
+ return MiniCPMVBatchFeature(data={**model_inputs})
141
+
142
+ pattern = "(<image>./</image>)"
143
+ images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
144
+
145
+ if isinstance(texts, str):
146
+ texts = [texts]
147
+ input_ids_list = []
148
+ image_bounds_list = []
149
+ for index, text in enumerate(texts):
150
+ image_tags = re.findall(pattern, text)
151
+ assert len(image_tags) == len(image_sizes[index])
152
+ text_chunks = text.split(pattern)
153
+ final_text = ""
154
+ for i in range(len(image_tags)):
155
+ final_text = final_text + text_chunks[i] + \
156
+ self.image_processor.get_slice_image_placeholder(
157
+ image_sizes[index][i],
158
+ i,
159
+ max_slice_nums,
160
+ use_image_id
161
+ )
162
+ final_text += text_chunks[-1]
163
+ input_ids, image_bounds = self._convert(final_text, max_length)
164
+ input_ids_list.append(input_ids)
165
+ image_bounds_list.append(image_bounds)
166
+ padded_input_ids, padding_lengths = self.pad(
167
+ input_ids_list,
168
+ padding_side="left"
169
+ )
170
+ for i, length in enumerate(padding_lengths):
171
+ image_bounds_list[i] = image_bounds_list[i] + length
172
+ attention_mask = padded_input_ids.ne(0)
173
+
174
+ return MiniCPMVBatchFeature(data={
175
+ "input_ids": padded_input_ids,
176
+ "attention_mask": attention_mask,
177
+ "pixel_values": images,
178
+ "image_sizes": image_sizes,
179
+ "image_bound": image_bounds_list,
180
+ "tgt_sizes": tgt_sizes
181
+ })
182
+
183
+ @property
184
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
185
+ def model_input_names(self):
186
+ tokenizer_input_names = self.tokenizer.model_input_names
187
+ image_processor_input_names = self.image_processor.model_input_names
188
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
189
+
190
+
191
+ def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
192
+ items = []
193
+ if isinstance(inputs[0], list):
194
+ assert isinstance(inputs[0][0], torch.Tensor)
195
+ for it in inputs:
196
+ for tr in it:
197
+ items.append(tr)
198
+ else:
199
+ assert isinstance(inputs[0], torch.Tensor)
200
+ items = inputs
201
+
202
+ batch_size = len(items)
203
+ shape = items[0].shape
204
+ dim = len(shape)
205
+ assert dim <= 2
206
+ if max_length is None:
207
+ max_length = 0
208
+ max_length = max(max_length, max(item.shape[-1] for item in items))
209
+ min_length = min(item.shape[-1] for item in items)
210
+ dtype = items[0].dtype
211
+
212
+ if dim == 0:
213
+ return torch.stack([item for item in items], dim=0), [0]
214
+ elif dim == 1:
215
+ if max_length == min_length:
216
+ return torch.stack([item for item in items], dim=0), [0] * batch_size
217
+ tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
218
+ else:
219
+ tensor = (
220
+ torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
221
+ + padding_value
222
+ )
223
+
224
+ padding_length = []
225
+ for i, item in enumerate(items):
226
+ if dim == 1:
227
+ if padding_side == "left":
228
+ tensor[i, -len(item) :] = item.clone()
229
+ else:
230
+ tensor[i, : len(item)] = item.clone()
231
+ elif dim == 2:
232
+ if padding_side == "left":
233
+ tensor[i, -len(item) :, :] = item.clone()
234
+ else:
235
+ tensor[i, : len(item), :] = item.clone()
236
+ padding_length.append(tensor.shape[-1] - len(item))
237
+
238
+ return tensor, padding_length
resampler.py ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import partial
2
+ from typing import Optional, Tuple
3
+ import numpy as np
4
+ import warnings
5
+
6
+ import torch
7
+ from torch import nn
8
+ from torch import Tensor
9
+ import torch.nn.functional as F
10
+ from torch.nn.functional import *
11
+ from torch.nn.modules.activation import *
12
+ from torch.nn.init import trunc_normal_, constant_, xavier_normal_, xavier_uniform_
13
+
14
+ from transformers.integrations import is_deepspeed_zero3_enabled
15
+
16
+ def get_2d_sincos_pos_embed(embed_dim, image_size):
17
+ """
18
+ image_size: image_size or (image_height, image_width)
19
+ return:
20
+ pos_embed: [image_height, image_width, embed_dim]
21
+ """
22
+ if isinstance(image_size, int):
23
+ grid_h_size, grid_w_size = image_size, image_size
24
+ else:
25
+ grid_h_size, grid_w_size = image_size[0], image_size[1]
26
+
27
+ grid_h = np.arange(grid_h_size, dtype=np.float32)
28
+ grid_w = np.arange(grid_w_size, dtype=np.float32)
29
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
30
+ grid = np.stack(grid, axis=0)
31
+
32
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
33
+ return pos_embed
34
+
35
+
36
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
37
+ assert embed_dim % 2 == 0
38
+
39
+ # use half of dimensions to encode grid_h
40
+ emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
41
+ emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
42
+
43
+ emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
44
+ return emb
45
+
46
+
47
+ def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
48
+ """
49
+ embed_dim: output dimension for each position
50
+ pos: a list of positions to be encoded: size (H, W)
51
+ out: (H, W, D)
52
+ """
53
+ assert embed_dim % 2 == 0
54
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
55
+ omega /= embed_dim / 2.
56
+ omega = 1. / 10000 ** omega # (D/2,)
57
+
58
+ out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
59
+
60
+ emb_sin = np.sin(out) # (H, W, D/2)
61
+ emb_cos = np.cos(out) # (H, W, D/2)
62
+
63
+ emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
64
+ return emb
65
+
66
+
67
+ class Resampler(nn.Module):
68
+ """
69
+ A 2D perceiver-resampler network with one cross attention layers by
70
+ given learnable queries and 2d sincos pos_emb
71
+ Outputs:
72
+ A tensor with the shape of (batch_size, num_queries, embed_dim)
73
+ """
74
+
75
+ def __init__(
76
+ self,
77
+ num_queries,
78
+ embed_dim,
79
+ num_heads,
80
+ kv_dim=None,
81
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
82
+ adaptive=False,
83
+ max_size=(70, 70),
84
+ ):
85
+ super().__init__()
86
+ self.num_queries = num_queries
87
+ self.embed_dim = embed_dim
88
+ self.num_heads = num_heads
89
+ self.adaptive = adaptive
90
+ self.max_size = max_size
91
+
92
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
93
+
94
+ if kv_dim is not None and kv_dim != embed_dim:
95
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
96
+ else:
97
+ self.kv_proj = nn.Identity()
98
+
99
+ self.attn = MultiheadAttention(embed_dim, num_heads)
100
+ self.ln_q = norm_layer(embed_dim)
101
+ self.ln_kv = norm_layer(embed_dim)
102
+
103
+ self.ln_post = norm_layer(embed_dim)
104
+ self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
105
+
106
+ self._set_2d_pos_cache(self.max_size)
107
+
108
+ def _set_2d_pos_cache(self, max_size, device='cpu'):
109
+ if is_deepspeed_zero3_enabled():
110
+ device='cuda'
111
+ pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
112
+ self.register_buffer("pos_embed", pos_embed, persistent=False)
113
+
114
+ def _adjust_pos_cache(self, tgt_sizes, device):
115
+ max_h = torch.max(tgt_sizes[:, 0])
116
+ max_w = torch.max(tgt_sizes[:, 1])
117
+ if max_h > self.max_size[0] or max_w > self.max_size[1]:
118
+ self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
119
+ self._set_2d_pos_cache(self.max_size, device)
120
+
121
+ def _init_weights(self, m):
122
+ if isinstance(m, nn.Linear):
123
+ trunc_normal_(m.weight, std=.02)
124
+ if isinstance(m, nn.Linear) and m.bias is not None:
125
+ nn.init.constant_(m.bias, 0)
126
+ elif isinstance(m, nn.LayerNorm):
127
+ nn.init.constant_(m.bias, 0)
128
+ nn.init.constant_(m.weight, 1.0)
129
+
130
+ def forward(self, x, tgt_sizes=None):
131
+ assert x.shape[0] == tgt_sizes.shape[0]
132
+ bs = x.shape[0]
133
+
134
+ device = x.device
135
+ dtype = x.dtype
136
+
137
+ patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
138
+
139
+ self._adjust_pos_cache(tgt_sizes, device=device)
140
+
141
+ max_patch_len = torch.max(patch_len)
142
+ key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
143
+
144
+ pos_embed = []
145
+ for i in range(bs):
146
+ tgt_h, tgt_w = tgt_sizes[i]
147
+ pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
148
+ key_padding_mask[i, patch_len[i]:] = True
149
+
150
+ pos_embed = torch.nn.utils.rnn.pad_sequence(
151
+ pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
152
+
153
+ x = self.kv_proj(x) # B * L * D
154
+ x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
155
+
156
+ q = self.ln_q(self.query) # Q * D
157
+
158
+ out = self.attn(
159
+ self._repeat(q, bs), # Q * B * D
160
+ x + pos_embed, # L * B * D + L * B * D
161
+ x,
162
+ key_padding_mask=key_padding_mask)[0]
163
+ # out: Q * B * D
164
+ x = out.permute(1, 0, 2) # B * Q * D
165
+
166
+ x = self.ln_post(x)
167
+ x = x @ self.proj
168
+ return x
169
+
170
+ def _repeat(self, query, N: int):
171
+ return query.unsqueeze(1).repeat(1, N, 1)
172
+
173
+
174
+ class MultiheadAttention(nn.MultiheadAttention):
175
+ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
176
+ add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
177
+ super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
178
+
179
+ # rewrite out_proj layer,with nn.Linear
180
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
181
+
182
+ def forward(
183
+ self,
184
+ query: Tensor,
185
+ key: Tensor,
186
+ value: Tensor,
187
+ key_padding_mask: Optional[Tensor] = None,
188
+ need_weights: bool = True,
189
+ attn_mask: Optional[Tensor] = None,
190
+ average_attn_weights: bool = True,
191
+ is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
192
+ why_not_fast_path = ''
193
+ if ((attn_mask is not None and torch.is_floating_point(attn_mask))
194
+ or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
195
+ why_not_fast_path = "floating-point masks are not supported for fast path."
196
+
197
+ is_batched = query.dim() == 3
198
+
199
+ key_padding_mask = _canonical_mask(
200
+ mask=key_padding_mask,
201
+ mask_name="key_padding_mask",
202
+ other_type=F._none_or_dtype(attn_mask),
203
+ other_name="attn_mask",
204
+ target_type=query.dtype
205
+ )
206
+
207
+ attn_mask = _canonical_mask(
208
+ mask=attn_mask,
209
+ mask_name="attn_mask",
210
+ other_type=None,
211
+ other_name="",
212
+ target_type=query.dtype,
213
+ check_other=False,
214
+ )
215
+
216
+
217
+ if not is_batched:
218
+ why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
219
+ elif query is not key or key is not value:
220
+ # When lifting this restriction, don't forget to either
221
+ # enforce that the dtypes all match or test cases where
222
+ # they don't!
223
+ why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
224
+ elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
225
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
226
+ elif self.in_proj_weight is None:
227
+ why_not_fast_path = "in_proj_weight was None"
228
+ elif query.dtype != self.in_proj_weight.dtype:
229
+ # this case will fail anyway, but at least they'll get a useful error message.
230
+ why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
231
+ elif self.training:
232
+ why_not_fast_path = "training is enabled"
233
+ elif (self.num_heads % 2) != 0:
234
+ why_not_fast_path = "self.num_heads is not even"
235
+ elif not self.batch_first:
236
+ why_not_fast_path = "batch_first was not True"
237
+ elif self.bias_k is not None:
238
+ why_not_fast_path = "self.bias_k was not None"
239
+ elif self.bias_v is not None:
240
+ why_not_fast_path = "self.bias_v was not None"
241
+ elif self.add_zero_attn:
242
+ why_not_fast_path = "add_zero_attn was enabled"
243
+ elif not self._qkv_same_embed_dim:
244
+ why_not_fast_path = "_qkv_same_embed_dim was not True"
245
+ elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
246
+ why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
247
+ is not supported with NestedTensor input"
248
+ elif torch.is_autocast_enabled():
249
+ why_not_fast_path = "autocast is enabled"
250
+
251
+ if not why_not_fast_path:
252
+ tensor_args = (
253
+ query,
254
+ key,
255
+ value,
256
+ self.in_proj_weight,
257
+ self.in_proj_bias,
258
+ self.out_proj.weight,
259
+ self.out_proj.bias,
260
+ )
261
+ # We have to use list comprehensions below because TorchScript does not support
262
+ # generator expressions.
263
+ if torch.overrides.has_torch_function(tensor_args):
264
+ why_not_fast_path = "some Tensor argument has_torch_function"
265
+ elif _is_make_fx_tracing():
266
+ why_not_fast_path = "we are running make_fx tracing"
267
+ elif not all(_check_arg_device(x) for x in tensor_args):
268
+ why_not_fast_path = ("some Tensor argument's device is neither one of "
269
+ f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
270
+ elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
271
+ why_not_fast_path = ("grad is enabled and at least one of query or the "
272
+ "input/output projection weights or biases requires_grad")
273
+ if not why_not_fast_path:
274
+ merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
275
+
276
+ if self.in_proj_bias is not None and self.in_proj_weight is not None:
277
+ return torch._native_multi_head_attention(
278
+ query,
279
+ key,
280
+ value,
281
+ self.embed_dim,
282
+ self.num_heads,
283
+ self.in_proj_weight,
284
+ self.in_proj_bias,
285
+ self.out_proj.weight,
286
+ self.out_proj.bias,
287
+ merged_mask,
288
+ need_weights,
289
+ average_attn_weights,
290
+ mask_type)
291
+
292
+ any_nested = query.is_nested or key.is_nested or value.is_nested
293
+ assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
294
+ f"The fast path was not hit because {why_not_fast_path}")
295
+
296
+ if self.batch_first and is_batched:
297
+ # make sure that the transpose op does not affect the "is" property
298
+ if key is value:
299
+ if query is key:
300
+ query = key = value = query.transpose(1, 0)
301
+ else:
302
+ query, key = (x.transpose(1, 0) for x in (query, key))
303
+ value = key
304
+ else:
305
+ query, key, value = (x.transpose(1, 0) for x in (query, key, value))
306
+
307
+ if not self._qkv_same_embed_dim:
308
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
309
+ query, key, value, self.embed_dim, self.num_heads,
310
+ self.in_proj_weight, self.in_proj_bias,
311
+ self.bias_k, self.bias_v, self.add_zero_attn,
312
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
313
+ training=self.training,
314
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
315
+ attn_mask=attn_mask,
316
+ use_separate_proj_weight=True,
317
+ q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
318
+ v_proj_weight=self.v_proj_weight,
319
+ average_attn_weights=average_attn_weights,
320
+ is_causal=is_causal)
321
+ else:
322
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
323
+ query, key, value, self.embed_dim, self.num_heads,
324
+ self.in_proj_weight, self.in_proj_bias,
325
+ self.bias_k, self.bias_v, self.add_zero_attn,
326
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
327
+ training=self.training,
328
+ key_padding_mask=key_padding_mask,
329
+ need_weights=need_weights,
330
+ attn_mask=attn_mask,
331
+ average_attn_weights=average_attn_weights,
332
+ is_causal=is_causal)
333
+ if self.batch_first and is_batched:
334
+ return attn_output.transpose(1, 0), attn_output_weights
335
+ else:
336
+ return attn_output, attn_output_weights
337
+
338
+ def multi_head_attention_forward(
339
+ self,
340
+ query: Tensor,
341
+ key: Tensor,
342
+ value: Tensor,
343
+ embed_dim_to_check: int,
344
+ num_heads: int,
345
+ in_proj_weight: Optional[Tensor],
346
+ in_proj_bias: Optional[Tensor],
347
+ bias_k: Optional[Tensor],
348
+ bias_v: Optional[Tensor],
349
+ add_zero_attn: bool,
350
+ dropout_p: float,
351
+ out_proj_weight: Tensor,
352
+ out_proj_bias: Optional[Tensor],
353
+ training: bool = True,
354
+ key_padding_mask: Optional[Tensor] = None,
355
+ need_weights: bool = True,
356
+ attn_mask: Optional[Tensor] = None,
357
+ use_separate_proj_weight: bool = False,
358
+ q_proj_weight: Optional[Tensor] = None,
359
+ k_proj_weight: Optional[Tensor] = None,
360
+ v_proj_weight: Optional[Tensor] = None,
361
+ static_k: Optional[Tensor] = None,
362
+ static_v: Optional[Tensor] = None,
363
+ average_attn_weights: bool = True,
364
+ is_causal: bool = False,
365
+ ) -> Tuple[Tensor, Optional[Tensor]]:
366
+ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
367
+
368
+ is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
369
+
370
+ # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
371
+ # is batched, run the computation and before returning squeeze the
372
+ # batch dimension so that the output doesn't carry this temporary batch dimension.
373
+ if not is_batched:
374
+ # unsqueeze if the input is unbatched
375
+ query = query.unsqueeze(1)
376
+ key = key.unsqueeze(1)
377
+ value = value.unsqueeze(1)
378
+ if key_padding_mask is not None:
379
+ key_padding_mask = key_padding_mask.unsqueeze(0)
380
+
381
+ # set up shape vars
382
+ tgt_len, bsz, embed_dim = query.shape
383
+ src_len, _, _ = key.shape
384
+
385
+ key_padding_mask = _canonical_mask(
386
+ mask=key_padding_mask,
387
+ mask_name="key_padding_mask",
388
+ other_type=_none_or_dtype(attn_mask),
389
+ other_name="attn_mask",
390
+ target_type=query.dtype
391
+ )
392
+
393
+ if is_causal and attn_mask is None:
394
+ raise RuntimeError(
395
+ "Need attn_mask if specifying the is_causal hint. "
396
+ "You may use the Transformer module method "
397
+ "`generate_square_subsequent_mask` to create this mask."
398
+ )
399
+
400
+ if is_causal and key_padding_mask is None and not need_weights:
401
+ # when we have a kpm or need weights, we need attn_mask
402
+ # Otherwise, we use the is_causal hint go as is_causal
403
+ # indicator to SDPA.
404
+ attn_mask = None
405
+ else:
406
+ attn_mask = _canonical_mask(
407
+ mask=attn_mask,
408
+ mask_name="attn_mask",
409
+ other_type=None,
410
+ other_name="",
411
+ target_type=query.dtype,
412
+ check_other=False,
413
+ )
414
+
415
+ if key_padding_mask is not None:
416
+ # We have the attn_mask, and use that to merge kpm into it.
417
+ # Turn off use of is_causal hint, as the merged mask is no
418
+ # longer causal.
419
+ is_causal = False
420
+
421
+ assert embed_dim == embed_dim_to_check, \
422
+ f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
423
+ if isinstance(embed_dim, torch.Tensor):
424
+ # embed_dim can be a tensor when JIT tracing
425
+ head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
426
+ else:
427
+ head_dim = embed_dim // num_heads
428
+ assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
429
+ if use_separate_proj_weight:
430
+ # allow MHA to have different embedding dimensions when separate projection weights are used
431
+ assert key.shape[:2] == value.shape[:2], \
432
+ f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
433
+ else:
434
+ assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
435
+
436
+ #
437
+ # compute in-projection
438
+ #
439
+ if not use_separate_proj_weight:
440
+ assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
441
+ q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
442
+ else:
443
+ assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
444
+ assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
445
+ assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
446
+ if in_proj_bias is None:
447
+ b_q = b_k = b_v = None
448
+ else:
449
+ b_q, b_k, b_v = in_proj_bias.chunk(3)
450
+ q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
451
+
452
+ # prep attention mask
453
+
454
+ if attn_mask is not None:
455
+ # ensure attn_mask's dim is 3
456
+ if attn_mask.dim() == 2:
457
+ correct_2d_size = (tgt_len, src_len)
458
+ if attn_mask.shape != correct_2d_size:
459
+ raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
460
+ attn_mask = attn_mask.unsqueeze(0)
461
+ elif attn_mask.dim() == 3:
462
+ correct_3d_size = (bsz * num_heads, tgt_len, src_len)
463
+ if attn_mask.shape != correct_3d_size:
464
+ raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
465
+ else:
466
+ raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
467
+
468
+ # add bias along batch dimension (currently second)
469
+ if bias_k is not None and bias_v is not None:
470
+ assert static_k is None, "bias cannot be added to static key."
471
+ assert static_v is None, "bias cannot be added to static value."
472
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
473
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
474
+ if attn_mask is not None:
475
+ attn_mask = pad(attn_mask, (0, 1))
476
+ if key_padding_mask is not None:
477
+ key_padding_mask = pad(key_padding_mask, (0, 1))
478
+ else:
479
+ assert bias_k is None
480
+ assert bias_v is None
481
+
482
+ #
483
+ # reshape q, k, v for multihead attention and make em batch first
484
+ #
485
+ q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
486
+ if static_k is None:
487
+ k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
488
+ else:
489
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
490
+ assert static_k.size(0) == bsz * num_heads, \
491
+ f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
492
+ assert static_k.size(2) == head_dim, \
493
+ f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
494
+ k = static_k
495
+ if static_v is None:
496
+ v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
497
+ else:
498
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
499
+ assert static_v.size(0) == bsz * num_heads, \
500
+ f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
501
+ assert static_v.size(2) == head_dim, \
502
+ f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
503
+ v = static_v
504
+
505
+ # add zero attention along batch dimension (now first)
506
+ if add_zero_attn:
507
+ zero_attn_shape = (bsz * num_heads, 1, head_dim)
508
+ k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
509
+ v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
510
+ if attn_mask is not None:
511
+ attn_mask = pad(attn_mask, (0, 1))
512
+ if key_padding_mask is not None:
513
+ key_padding_mask = pad(key_padding_mask, (0, 1))
514
+
515
+ # update source sequence length after adjustments
516
+ src_len = k.size(1)
517
+
518
+ # merge key padding and attention masks
519
+ if key_padding_mask is not None:
520
+ assert key_padding_mask.shape == (bsz, src_len), \
521
+ f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
522
+ key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
523
+ expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
524
+ if attn_mask is None:
525
+ attn_mask = key_padding_mask
526
+ else:
527
+ attn_mask = attn_mask + key_padding_mask
528
+
529
+ # adjust dropout probability
530
+ if not training:
531
+ dropout_p = 0.0
532
+
533
+ #
534
+ # (deep breath) calculate attention and out projection
535
+ #
536
+
537
+ if need_weights:
538
+ B, Nt, E = q.shape
539
+ q_scaled = q / math.sqrt(E)
540
+
541
+ assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
542
+
543
+ if attn_mask is not None:
544
+ attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
545
+ else:
546
+ attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
547
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
548
+ if dropout_p > 0.0:
549
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p)
550
+
551
+ attn_output = torch.bmm(attn_output_weights, v)
552
+
553
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
554
+ attn_output = self.out_proj(attn_output)
555
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
556
+
557
+ # optionally average attention weights over heads
558
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
559
+ if average_attn_weights:
560
+ attn_output_weights = attn_output_weights.mean(dim=1)
561
+
562
+ if not is_batched:
563
+ # squeeze the output if input was unbatched
564
+ attn_output = attn_output.squeeze(1)
565
+ attn_output_weights = attn_output_weights.squeeze(0)
566
+ return attn_output, attn_output_weights
567
+ else:
568
+ # attn_mask can be either (L,S) or (N*num_heads, L, S)
569
+ # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
570
+ # in order to match the input for SDPA of (N, num_heads, L, S)
571
+ if attn_mask is not None:
572
+ if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
573
+ attn_mask = attn_mask.unsqueeze(0)
574
+ else:
575
+ attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
576
+
577
+ q = q.view(bsz, num_heads, tgt_len, head_dim)
578
+ k = k.view(bsz, num_heads, src_len, head_dim)
579
+ v = v.view(bsz, num_heads, src_len, head_dim)
580
+
581
+ attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
582
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
583
+
584
+ attn_output = self.out_proj(attn_output)
585
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
586
+ if not is_batched:
587
+ # squeeze the output if input was unbatched
588
+ attn_output = attn_output.squeeze(1)
589
+ return attn_output, None
590
+
591
+
592
+ def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
593
+ key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
594
+ # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
595
+ # and returns if the input is batched or not.
596
+ # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
597
+
598
+ # Shape check.
599
+ if query.dim() == 3:
600
+ # Batched Inputs
601
+ is_batched = True
602
+ assert key.dim() == 3 and value.dim() == 3, \
603
+ ("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
604
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
605
+ if key_padding_mask is not None:
606
+ assert key_padding_mask.dim() == 2, \
607
+ ("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
608
+ f" but found {key_padding_mask.dim()}-D tensor instead")
609
+ if attn_mask is not None:
610
+ assert attn_mask.dim() in (2, 3), \
611
+ ("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
612
+ f" but found {attn_mask.dim()}-D tensor instead")
613
+ elif query.dim() == 2:
614
+ # Unbatched Inputs
615
+ is_batched = False
616
+ assert key.dim() == 2 and value.dim() == 2, \
617
+ ("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
618
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
619
+
620
+ if key_padding_mask is not None:
621
+ assert key_padding_mask.dim() == 1, \
622
+ ("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
623
+ f" but found {key_padding_mask.dim()}-D tensor instead")
624
+
625
+ if attn_mask is not None:
626
+ assert attn_mask.dim() in (2, 3), \
627
+ ("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
628
+ f" but found {attn_mask.dim()}-D tensor instead")
629
+ if attn_mask.dim() == 3:
630
+ expected_shape = (num_heads, query.shape[0], key.shape[0])
631
+ assert attn_mask.shape == expected_shape, \
632
+ (f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
633
+ else:
634
+ raise AssertionError(
635
+ f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
636
+
637
+ return is_batched
638
+
639
+
640
+ def _canonical_mask(
641
+ mask: Optional[Tensor],
642
+ mask_name: str,
643
+ other_type: Optional[DType],
644
+ other_name: str,
645
+ target_type: DType,
646
+ check_other: bool = True,
647
+ ) -> Optional[Tensor]:
648
+
649
+ if mask is not None:
650
+ _mask_dtype = mask.dtype
651
+ _mask_is_float = torch.is_floating_point(mask)
652
+ if _mask_dtype != torch.bool and not _mask_is_float:
653
+ raise AssertionError(
654
+ f"only bool and floating types of {mask_name} are supported")
655
+ if check_other and other_type is not None:
656
+ if _mask_dtype != other_type:
657
+ warnings.warn(
658
+ f"Support for mismatched {mask_name} and {other_name} "
659
+ "is deprecated. Use same type for both instead."
660
+ )
661
+ if not _mask_is_float:
662
+ mask = (
663
+ torch.zeros_like(mask, dtype=target_type)
664
+ .masked_fill_(mask, float("-inf"))
665
+ )
666
+ return mask
667
+
668
+
669
+ def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
670
+ if input is None:
671
+ return None
672
+ elif isinstance(input, torch.Tensor):
673
+ return input.dtype
674
+ raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
675
+
676
+ def _in_projection_packed(
677
+ q: Tensor,
678
+ k: Tensor,
679
+ v: Tensor,
680
+ w: Tensor,
681
+ b: Optional[Tensor] = None,
682
+ ) -> List[Tensor]:
683
+ r"""
684
+ Performs the in-projection step of the attention operation, using packed weights.
685
+ Output is a triple containing projection tensors for query, key and value.
686
+ Args:
687
+ q, k, v: query, key and value tensors to be projected. For self-attention,
688
+ these are typically the same tensor; for encoder-decoder attention,
689
+ k and v are typically the same tensor. (We take advantage of these
690
+ identities for performance if they are present.) Regardless, q, k and v
691
+ must share a common embedding dimension; otherwise their shapes may vary.
692
+ w: projection weights for q, k and v, packed into a single tensor. Weights
693
+ are packed along dimension 0, in q, k, v order.
694
+ b: optional projection biases for q, k and v, packed into a single tensor
695
+ in q, k, v order.
696
+ Shape:
697
+ Inputs:
698
+ - q: :math:`(..., E)` where E is the embedding dimension
699
+ - k: :math:`(..., E)` where E is the embedding dimension
700
+ - v: :math:`(..., E)` where E is the embedding dimension
701
+ - w: :math:`(E * 3, E)` where E is the embedding dimension
702
+ - b: :math:`E * 3` where E is the embedding dimension
703
+ Output:
704
+ - in output list :math:`[q', k', v']`, each output tensor will have the
705
+ same shape as the corresponding input tensor.
706
+ """
707
+ E = q.size(-1)
708
+ if k is v:
709
+ if q is k:
710
+ # self-attention
711
+ proj = linear(q, w, b)
712
+ # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
713
+ proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
714
+ return proj[0], proj[1], proj[2]
715
+ else:
716
+ # encoder-decoder attention
717
+ w_q, w_kv = w.split([E, E * 2])
718
+ if b is None:
719
+ b_q = b_kv = None
720
+ else:
721
+ b_q, b_kv = b.split([E, E * 2])
722
+ q_proj = linear(q, w_q, b_q)
723
+ kv_proj = linear(k, w_kv, b_kv)
724
+ # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
725
+ kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
726
+ return (q_proj, kv_proj[0], kv_proj[1])
727
+ else:
728
+ w_q, w_k, w_v = w.chunk(3)
729
+ if b is None:
730
+ b_q = b_k = b_v = None
731
+ else:
732
+ b_q, b_k, b_v = b.chunk(3)
733
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
734
+
735
+
736
+ def _in_projection(
737
+ q: Tensor,
738
+ k: Tensor,
739
+ v: Tensor,
740
+ w_q: Tensor,
741
+ w_k: Tensor,
742
+ w_v: Tensor,
743
+ b_q: Optional[Tensor] = None,
744
+ b_k: Optional[Tensor] = None,
745
+ b_v: Optional[Tensor] = None,
746
+ ) -> Tuple[Tensor, Tensor, Tensor]:
747
+ r"""
748
+ Performs the in-projection step of the attention operation. This is simply
749
+ a triple of linear projections, with shape constraints on the weights which
750
+ ensure embedding dimension uniformity in the projected outputs.
751
+ Output is a triple containing projection tensors for query, key and value.
752
+ Args:
753
+ q, k, v: query, key and value tensors to be projected.
754
+ w_q, w_k, w_v: weights for q, k and v, respectively.
755
+ b_q, b_k, b_v: optional biases for q, k and v, respectively.
756
+ Shape:
757
+ Inputs:
758
+ - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
759
+ number of leading dimensions.
760
+ - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
761
+ number of leading dimensions.
762
+ - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
763
+ number of leading dimensions.
764
+ - w_q: :math:`(Eq, Eq)`
765
+ - w_k: :math:`(Eq, Ek)`
766
+ - w_v: :math:`(Eq, Ev)`
767
+ - b_q: :math:`(Eq)`
768
+ - b_k: :math:`(Eq)`
769
+ - b_v: :math:`(Eq)`
770
+ Output: in output triple :math:`(q', k', v')`,
771
+ - q': :math:`[Qdims..., Eq]`
772
+ - k': :math:`[Kdims..., Eq]`
773
+ - v': :math:`[Vdims..., Eq]`
774
+ """
775
+ Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
776
+ assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
777
+ assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
778
+ assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
779
+ assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
780
+ assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
781
+ assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
782
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
special_tokens_map.json ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ {
4
+ "content": "<image>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ {
11
+ "content": "</image>",
12
+ "lstrip": false,
13
+ "normalized": false,
14
+ "rstrip": false,
15
+ "single_word": false
16
+ },
17
+ {
18
+ "content": "<ref>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ {
25
+ "content": "</ref>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ {
32
+ "content": "<box>",
33
+ "lstrip": false,
34
+ "normalized": false,
35
+ "rstrip": false,
36
+ "single_word": false
37
+ },
38
+ {
39
+ "content": "</box>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false
44
+ },
45
+ {
46
+ "content": "<quad>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false
51
+ },
52
+ {
53
+ "content": "</quad>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false
58
+ },
59
+ {
60
+ "content": "<point>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false
65
+ },
66
+ {
67
+ "content": "</point>",
68
+ "lstrip": false,
69
+ "normalized": false,
70
+ "rstrip": false,
71
+ "single_word": false
72
+ },
73
+ {
74
+ "content": "<slice>",
75
+ "lstrip": false,
76
+ "normalized": false,
77
+ "rstrip": false,
78
+ "single_word": false
79
+ },
80
+ {
81
+ "content": "</slice>",
82
+ "lstrip": false,
83
+ "normalized": false,
84
+ "rstrip": false,
85
+ "single_word": false
86
+ },
87
+ {
88
+ "content": "<image_id>",
89
+ "lstrip": false,
90
+ "normalized": false,
91
+ "rstrip": false,
92
+ "single_word": false
93
+ },
94
+ {
95
+ "content": "</image_id>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false
100
+ },
101
+ {
102
+ "content": "<|reserved_special_token_0|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false
107
+ },
108
+ {
109
+ "content": "<|reserved_special_token_1|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false
114
+ },
115
+ {
116
+ "content": "<|reserved_special_token_2|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false
121
+ },
122
+ {
123
+ "content": "<|reserved_special_token_3|>",
124
+ "lstrip": false,
125
+ "normalized": false,
126
+ "rstrip": false,
127
+ "single_word": false
128
+ },
129
+ {
130
+ "content": "<|reserved_special_token_4|>",
131
+ "lstrip": false,
132
+ "normalized": false,
133
+ "rstrip": false,
134
+ "single_word": false
135
+ },
136
+ {
137
+ "content": "<|reserved_special_token_5|>",
138
+ "lstrip": false,
139
+ "normalized": false,
140
+ "rstrip": false,
141
+ "single_word": false
142
+ }
143
+ ],
144
+ "bos_token": {
145
+ "content": "<|im_start|>",
146
+ "lstrip": false,
147
+ "normalized": false,
148
+ "rstrip": false,
149
+ "single_word": false
150
+ },
151
+ "eos_token": {
152
+ "content": "<|im_end|>",
153
+ "lstrip": false,
154
+ "normalized": false,
155
+ "rstrip": false,
156
+ "single_word": false
157
+ },
158
+ "pad_token": {
159
+ "content": "<|endoftext|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false
164
+ },
165
+ "unk_token": {
166
+ "content": "<unk>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false
171
+ }
172
+ }
test.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # test.py
2
+ import torch
3
+ from PIL import Image
4
+ from transformers import AutoModel, AutoTokenizer, BitssAndBytesConfig
5
+
6
+ model = AutoModel.from_pretrained('./', trust_remote_code=True, torch_dtype=torch.bfloat16, local_files_only=True)
7
+ # model = model.to(device='cuda')
8
+
9
+ tokenizer = AutoTokenizer.from_pretrained('./', trust_remote_code=True)
10
+ model.eval()
11
+
12
+ image = Image.open('/data1/caitianchi/code/MiniCPM-V-2_5/20240614-205027.jpeg').convert('RGB')
13
+ question = '描述这张图?'
14
+ msgs = [{'role': 'user', 'content': question}]
15
+
16
+ res = model.chat(
17
+ image=image,
18
+ msgs=msgs,
19
+ tokenizer=tokenizer,
20
+ sampling=True, # if sampling=False, beam_search will be used by default
21
+ temperature=0.7,
22
+ # system_prompt='' # pass system_prompt if needed
23
+ )
24
+ print(res)
25
+
26
+ # ## if you want to use streaming, please make sure sampling=True and stream=True
27
+ # ## the model.chat will return a generator
28
+ # res = model.chat(
29
+ # image=image,
30
+ # msgs=msgs,
31
+ # tokenizer=tokenizer,
32
+ # sampling=True,
33
+ # temperature=0.7,
34
+ # stream=True
35
+ # )
36
+
37
+ # generated_text = ""
38
+ # for new_text in res:
39
+ # generated_text += new_text
40
+ # print(new_text, flush=True, end='')
tokenization_minicpmv_fast.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.qwen2 import Qwen2TokenizerFast
2
+
3
+
4
+ class MiniCPMVTokenizerFast(Qwen2TokenizerFast):
5
+ def __init__(self, **kwargs):
6
+ super().__init__(**kwargs)
7
+ self.im_start = "<image>"
8
+ self.im_end = "</image>"
9
+ self.ref_start = "<ref>"
10
+ self.ref_end = "</ref>"
11
+ self.box_start = "<box>"
12
+ self.box_end = "</box>"
13
+ self.quad_start = "<quad>"
14
+ self.quad_end = "</quad>"
15
+ self.slice_start = "<slice>"
16
+ self.slice_end = "</slice>"
17
+ self.im_id_start = "<image_id>"
18
+ self.im_id_end = "</image_id>"
19
+
20
+ @property
21
+ def eos_id(self):
22
+ return self.eos_token_id
23
+
24
+ @property
25
+ def bos_id(self):
26
+ return self.bos_token_id
27
+
28
+ @property
29
+ def unk_id(self):
30
+ return self.unk_token_id
31
+
32
+ @property
33
+ def im_start_id(self):
34
+ return self.convert_tokens_to_ids(self.im_start)
35
+
36
+ @property
37
+ def im_end_id(self):
38
+ return self.convert_tokens_to_ids(self.im_end)
39
+
40
+ @property
41
+ def slice_start_id(self):
42
+ return self.convert_tokens_to_ids(self.slice_start)
43
+
44
+ @property
45
+ def slice_end_id(self):
46
+ return self.convert_tokens_to_ids(self.slice_end)
47
+
48
+ @property
49
+ def im_id_start_id(self):
50
+ return self.convert_tokens_to_ids(self.im_id_start)
51
+
52
+ @property
53
+ def im_id_end_id(self):
54
+ return self.convert_tokens_to_ids(self.im_id_end)
55
+
56
+ @property
57
+ def newline_id(self):
58
+ return self.convert_tokens_to_ids('\n')
59
+
60
+ @staticmethod
61
+ def escape(text: str) -> str:
62
+ return text
63
+
64
+ @staticmethod
65
+ def unescape(text: str) -> str:
66
+ return text
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "128244": {
5
+ "content": "<unk>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151643": {
13
+ "content": "<|endoftext|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151644": {
21
+ "content": "<|im_start|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151645": {
29
+ "content": "<|im_end|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151646": {
37
+ "content": "<image>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151647": {
45
+ "content": "</image>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151648": {
53
+ "content": "<ref>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151649": {
61
+ "content": "</ref>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151650": {
69
+ "content": "<box>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151651": {
77
+ "content": "</box>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151652": {
85
+ "content": "<quad>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151653": {
93
+ "content": "</quad>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151654": {
101
+ "content": "<point>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151655": {
109
+ "content": "</point>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151656": {
117
+ "content": "<slice>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "151657": {
125
+ "content": "</slice>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "151658": {
133
+ "content": "<image_id>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "151659": {
141
+ "content": "</image_id>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "151660": {
149
+ "content": "<|reserved_special_token_0|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "151661": {
157
+ "content": "<|reserved_special_token_1|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "151662": {
165
+ "content": "<|reserved_special_token_2|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "151663": {
173
+ "content": "<|reserved_special_token_3|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "151664": {
181
+ "content": "<|reserved_special_token_4|>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "151665": {
189
+ "content": "<|reserved_special_token_5|>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ }
196
+ },
197
+ "additional_special_tokens": [
198
+ "<image>",
199
+ "</image>",
200
+ "<ref>",
201
+ "</ref>",
202
+ "<box>",
203
+ "</box>",
204
+ "<quad>",
205
+ "</quad>",
206
+ "<point>",
207
+ "</point>",
208
+ "<slice>",
209
+ "</slice>",
210
+ "<image_id>",
211
+ "</image_id>",
212
+ "<|reserved_special_token_0|>",
213
+ "<|reserved_special_token_1|>",
214
+ "<|reserved_special_token_2|>",
215
+ "<|reserved_special_token_3|>",
216
+ "<|reserved_special_token_4|>",
217
+ "<|reserved_special_token_5|>"
218
+ ],
219
+ "bos_token": "<|im_start|>",
220
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
221
+ "clean_up_tokenization_spaces": false,
222
+ "eos_token": "<|im_end|>",
223
+ "errors": "replace",
224
+ "model_max_length": 1000000000000000019884624838656,
225
+ "pad_token": "<|endoftext|>",
226
+ "split_special_tokens": false,
227
+ "auto_map": {
228
+ "AutoTokenizer": [
229
+ "tokenization_minicpmv_fast.MiniCPMVTokenizerFast",
230
+ null
231
+ ]
232
+ },
233
+ "tokenizer_class": "MiniCPMVTokenizerFast",
234
+ "unk_token": "<unk>"
235
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff