--- library_name: transformers.js base_model: nielsr/vitpose-base-simple pipeline_tag: keypoint-detection --- https://huggingface.co/nielsr/vitpose-base-simple with ONNX weights to be compatible with Transformers.js. ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Pose estimation w/ `onnx-community/vitpose-base-simple`. ```js import { AutoModel, AutoImageProcessor, RawImage } from '@huggingface/transformers'; // Load model and processor const model_id = 'onnx-community/vitpose-base-simple'; const model = await AutoModel.from_pretrained(model_id); const processor = await AutoImageProcessor.from_pretrained(model_id); // Load image and prepare inputs const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/ryan-gosling.jpg'; const image = await RawImage.read(url); const inputs = await processor(image); // Predict heatmaps const { heatmaps } = await model(inputs); // Post-process heatmaps to get keypoints and scores const boxes = [[[0, 0, image.width, image.height]]]; const results = processor.post_process_pose_estimation(heatmaps, boxes)[0][0]; console.log(results); ``` Optionally, visualize the outputs (Node.js usage shown here, using the [`canvas`](https://www.npmjs.com/package/canvas) library): ```js import { createCanvas, createImageData } from 'canvas'; // Create canvas and draw image const canvas = createCanvas(image.width, image.height); const ctx = canvas.getContext('2d'); const imageData = createImageData(image.rgba().data, image.width, image.height); ctx.putImageData(imageData, 0, 0); // Draw edges between keypoints const points = results.keypoints; ctx.lineWidth = 4; ctx.strokeStyle = 'blue'; for (const [i, j] of model.config.edges) { const [x1, y1] = points[i]; const [x2, y2] = points[j]; ctx.beginPath(); ctx.moveTo(x1, y1); ctx.lineTo(x2, y2); ctx.stroke(); } // Draw circle at each keypoint ctx.fillStyle = 'red'; for (const [x, y] of points) { ctx.beginPath(); ctx.arc(x, y, 8, 0, 2 * Math.PI); ctx.fill(); } // Save image to file import fs from 'fs'; const out = fs.createWriteStream('pose.png'); const stream = canvas.createPNGStream(); stream.pipe(out) out.on('finish', () => console.log('The PNG file was created.')); ``` | Input image | Output image | | :----------:|:------------:| | ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/QpXlLNyLDKZUxXjokbUyy.jpeg) | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b253b7ac5ecaae3d1efe0c/xj0jaKo9aAOux-NSU8U7S.png) | --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).