File size: 2,168 Bytes
7b4e695
 
 
 
 
 
 
377db9d
 
7b4e695
 
377db9d
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4e695
 
 
 
 
 
 
 
377db9d
 
 
7b4e695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
377db9d
 
 
 
 
 
 
 
 
 
7b4e695
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: emikes-classifier
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emikes-classifier

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0253
- Accuracy: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 69
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3954        | 1.25  | 10   | 0.3092          | 0.8571   |
| 0.1249        | 2.5   | 20   | 0.1407          | 1.0      |
| 0.046         | 3.75  | 30   | 0.0666          | 1.0      |
| 0.034         | 5.0   | 40   | 0.1060          | 0.9286   |
| 0.0255        | 6.25  | 50   | 0.0295          | 1.0      |
| 0.0198        | 7.5   | 60   | 0.0274          | 1.0      |
| 0.0209        | 8.75  | 70   | 0.1060          | 0.9286   |
| 0.02          | 10.0  | 80   | 0.0253          | 1.0      |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.15.0
- Tokenizers 0.15.0