--- base_model: BAAI/bge-small-en-v1.5 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Mister Monday and Sneezer - they both:But when a fight emerges between the two figures - Mister Monday and Sneezer - they both disappear without any further regard to Arthur - text: the cat or animal lover:Great for the cat or animal lover - text: a truly likable character:THE INTRUDERS is further weakened by the lack of a truly likable character - text: '''s novel "keys of the Kingdom Mister Monday" is a:The children''s novel "keys of the Kingdom Mister Monday" is a hardcore mix beetween mystery and science fiction' - text: If books on criminal profiling and psychological forensics:If books on criminal profiling and psychological forensics are your thing, you'll probably really enjoy McDermid's work inference: false --- # SetFit Polarity Model with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [omymble/books-full-bge-aspect](https://huggingface.co/omymble/books-full-bge-aspect) - **SetFitABSA Polarity Model:** [omymble/books-full-bge-polarity](https://huggingface.co/omymble/books-full-bge-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | | | neutral | | | positive | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "omymble/books-full-bge-aspect", "omymble/books-full-bge-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 25.1976 | 78 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 14 | | neutral | 91 | | positive | 62 | ### Training Hyperparameters - batch_size: (64, 64) - num_epochs: (5, 5) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:--------:|:-------------:|:---------------:| | 0.0041 | 1 | 0.2476 | - | | 0.2049 | 50 | 0.2339 | - | | 0.4098 | 100 | 0.2053 | - | | 0.6148 | 150 | 0.0231 | - | | 0.8197 | 200 | 0.0038 | - | | 1.0246 | 250 | 0.0018 | - | | 1.2295 | 300 | 0.0017 | - | | 1.4344 | 350 | 0.0014 | - | | 1.6393 | 400 | 0.0013 | - | | 1.8443 | 450 | 0.001 | - | | 2.0492 | 500 | 0.001 | - | | 2.2541 | 550 | 0.0007 | - | | 2.4590 | 600 | 0.0006 | - | | 2.6639 | 650 | 0.0007 | - | | 2.8689 | 700 | 0.0006 | - | | 3.0738 | 750 | 0.0008 | - | | 3.2787 | 800 | 0.0007 | - | | 3.4836 | 850 | 0.0007 | - | | 3.6885 | 900 | 0.0006 | - | | 3.8934 | 950 | 0.0006 | - | | **4.0984** | **1000** | **0.0007** | **0.2748** | | 4.3033 | 1050 | 0.0009 | - | | 4.5082 | 1100 | 0.0006 | - | | 4.7131 | 1150 | 0.0006 | - | | 4.9180 | 1200 | 0.0005 | - | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - spaCy: 3.7.4 - Transformers: 4.39.0 - PyTorch: 2.3.1+cu121 - Datasets: 2.20.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```