omymble commited on
Commit
e88936a
1 Parent(s): 1e512ca

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - absa
10
+ - sentence-transformers
11
+ - text-classification
12
+ - generated_from_setfit_trainer
13
+ widget:
14
+ - text: Mister Monday and Sneezer - they both:But when a fight emerges between the
15
+ two figures - Mister Monday and Sneezer - they both disappear without any further
16
+ regard to Arthur
17
+ - text: the cat or animal lover:Great for the cat or animal lover
18
+ - text: a truly likable character:THE INTRUDERS is further weakened by the lack of
19
+ a truly likable character
20
+ - text: '''s novel "keys of the Kingdom Mister Monday" is a:The children''s novel
21
+ "keys of the Kingdom Mister Monday" is a hardcore mix beetween mystery and science
22
+ fiction'
23
+ - text: If books on criminal profiling and psychological forensics:If books on criminal
24
+ profiling and psychological forensics are your thing, you'll probably really enjoy
25
+ McDermid's work
26
+ inference: false
27
+ ---
28
+
29
+ # SetFit Polarity Model with BAAI/bge-small-en-v1.5
30
+
31
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
32
+
33
+ The model has been trained using an efficient few-shot learning technique that involves:
34
+
35
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
36
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
37
+
38
+ This model was trained within the context of a larger system for ABSA, which looks like so:
39
+
40
+ 1. Use a spaCy model to select possible aspect span candidates.
41
+ 2. Use a SetFit model to filter these possible aspect span candidates.
42
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **spaCy Model:** en_core_web_lg
51
+ - **SetFitABSA Aspect Model:** [omymble/books-full-bge-aspect](https://huggingface.co/omymble/books-full-bge-aspect)
52
+ - **SetFitABSA Polarity Model:** [omymble/books-full-bge-polarity](https://huggingface.co/omymble/books-full-bge-polarity)
53
+ - **Maximum Sequence Length:** 512 tokens
54
+ - **Number of Classes:** 3 classes
55
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
62
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
63
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
64
+
65
+ ### Model Labels
66
+ | Label | Examples |
67
+ |:---------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
68
+ | negative | <ul><li>"too dark for younger ones, unless you:It might be an entertaining point of discussion with a child 12 or older, but it's too dark for younger ones, unless you're ready to talk about true evil, adult motivations, supernatural forces, and fratricide!"</li><li>'The mystery is secondary to:The mystery is secondary to the rest of the story and is only really approached in the remaining 30 pages of the book'</li><li>'was only my book with this problem:I have no idea if it was only my book with this problem'</li></ul> |
69
+ | neutral | <ul><li>'world, as Nix weaves a wonderful:-enjoy the genre of fantasies, of a unknown world, as Nix weaves a wonderful tale of the things that will open your eyes to a different world'</li><li>'Arthur must get through:Arthur must get through some horrifying trials to save his Earth from the plague, and to prove that he is the Rightful Heir'</li><li>'to say that Mister Monday is definitely worth:I was interested enough in the strange and original concept to read on to the next book, so I would venture to say that Mister Monday is definitely worth reading at least once'</li></ul> |
70
+ | positive | <ul><li>'I recommend THE INTRUDERS if you enjoy:I recommend THE INTRUDERS if you enjoy good writing, but if you want a great story, you should try THE STRAW MEN instead'</li><li>'of the major bios on "Big:I\'ve read all of the major bios on "Big Al" and this is by far the best'</li><li>'really great fantasy book:this is a really great fantasy book'</li></ul> |
71
+
72
+ ## Uses
73
+
74
+ ### Direct Use for Inference
75
+
76
+ First install the SetFit library:
77
+
78
+ ```bash
79
+ pip install setfit
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+
84
+ ```python
85
+ from setfit import AbsaModel
86
+
87
+ # Download from the 🤗 Hub
88
+ model = AbsaModel.from_pretrained(
89
+ "omymble/books-full-bge-aspect",
90
+ "omymble/books-full-bge-polarity",
91
+ )
92
+ # Run inference
93
+ preds = model("The food was great, but the venue is just way too busy.")
94
+ ```
95
+
96
+ <!--
97
+ ### Downstream Use
98
+
99
+ *List how someone could finetune this model on their own dataset.*
100
+ -->
101
+
102
+ <!--
103
+ ### Out-of-Scope Use
104
+
105
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
106
+ -->
107
+
108
+ <!--
109
+ ## Bias, Risks and Limitations
110
+
111
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
112
+ -->
113
+
114
+ <!--
115
+ ### Recommendations
116
+
117
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
118
+ -->
119
+
120
+ ## Training Details
121
+
122
+ ### Training Set Metrics
123
+ | Training set | Min | Median | Max |
124
+ |:-------------|:----|:--------|:----|
125
+ | Word count | 3 | 25.1976 | 78 |
126
+
127
+ | Label | Training Sample Count |
128
+ |:---------|:----------------------|
129
+ | negative | 14 |
130
+ | neutral | 91 |
131
+ | positive | 62 |
132
+
133
+ ### Training Hyperparameters
134
+ - batch_size: (64, 64)
135
+ - num_epochs: (5, 5)
136
+ - max_steps: -1
137
+ - sampling_strategy: oversampling
138
+ - body_learning_rate: (2e-05, 1e-05)
139
+ - head_learning_rate: 0.01
140
+ - loss: CosineSimilarityLoss
141
+ - distance_metric: cosine_distance
142
+ - margin: 0.25
143
+ - end_to_end: False
144
+ - use_amp: True
145
+ - warmup_proportion: 0.1
146
+ - seed: 42
147
+ - eval_max_steps: -1
148
+ - load_best_model_at_end: True
149
+
150
+ ### Training Results
151
+ | Epoch | Step | Training Loss | Validation Loss |
152
+ |:----------:|:--------:|:-------------:|:---------------:|
153
+ | 0.0041 | 1 | 0.2476 | - |
154
+ | 0.2049 | 50 | 0.2339 | - |
155
+ | 0.4098 | 100 | 0.2053 | - |
156
+ | 0.6148 | 150 | 0.0231 | - |
157
+ | 0.8197 | 200 | 0.0038 | - |
158
+ | 1.0246 | 250 | 0.0018 | - |
159
+ | 1.2295 | 300 | 0.0017 | - |
160
+ | 1.4344 | 350 | 0.0014 | - |
161
+ | 1.6393 | 400 | 0.0013 | - |
162
+ | 1.8443 | 450 | 0.001 | - |
163
+ | 2.0492 | 500 | 0.001 | - |
164
+ | 2.2541 | 550 | 0.0007 | - |
165
+ | 2.4590 | 600 | 0.0006 | - |
166
+ | 2.6639 | 650 | 0.0007 | - |
167
+ | 2.8689 | 700 | 0.0006 | - |
168
+ | 3.0738 | 750 | 0.0008 | - |
169
+ | 3.2787 | 800 | 0.0007 | - |
170
+ | 3.4836 | 850 | 0.0007 | - |
171
+ | 3.6885 | 900 | 0.0006 | - |
172
+ | 3.8934 | 950 | 0.0006 | - |
173
+ | **4.0984** | **1000** | **0.0007** | **0.2748** |
174
+ | 4.3033 | 1050 | 0.0009 | - |
175
+ | 4.5082 | 1100 | 0.0006 | - |
176
+ | 4.7131 | 1150 | 0.0006 | - |
177
+ | 4.9180 | 1200 | 0.0005 | - |
178
+
179
+ * The bold row denotes the saved checkpoint.
180
+ ### Framework Versions
181
+ - Python: 3.10.12
182
+ - SetFit: 1.0.3
183
+ - Sentence Transformers: 3.0.1
184
+ - spaCy: 3.7.4
185
+ - Transformers: 4.39.0
186
+ - PyTorch: 2.3.1+cu121
187
+ - Datasets: 2.20.0
188
+ - Tokenizers: 0.15.2
189
+
190
+ ## Citation
191
+
192
+ ### BibTeX
193
+ ```bibtex
194
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
195
+ doi = {10.48550/ARXIV.2209.11055},
196
+ url = {https://arxiv.org/abs/2209.11055},
197
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
198
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
199
+ title = {Efficient Few-Shot Learning Without Prompts},
200
+ publisher = {arXiv},
201
+ year = {2022},
202
+ copyright = {Creative Commons Attribution 4.0 International}
203
+ }
204
+ ```
205
+
206
+ <!--
207
+ ## Glossary
208
+
209
+ *Clearly define terms in order to be accessible across audiences.*
210
+ -->
211
+
212
+ <!--
213
+ ## Model Card Authors
214
+
215
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
216
+ -->
217
+
218
+ <!--
219
+ ## Model Card Contact
220
+
221
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
222
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/step_1000",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.39.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "spacy_model": "en_core_web_lg",
4
+ "span_context": 3,
5
+ "labels": [
6
+ "negative",
7
+ "neutral",
8
+ "positive"
9
+ ]
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49979afecc90f33b94bbc2bc1064ac9ede535e6c88fd1b46d89981e68cfc4495
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5677816aec5ed6367937f0f6c49a2f36df233fe0cddc1b9622c6fca06415b713
3
+ size 10159
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff