omymble commited on
Commit
21b5282
1 Parent(s): e63a510

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-small-en-v1.5
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - absa
10
+ - sentence-transformers
11
+ - text-classification
12
+ - generated_from_setfit_trainer
13
+ widget:
14
+ - text: Pizza:Pizza and garlic knots are great as well, I order from them quite often
15
+ and the delivery is always super quick!
16
+ - text: restaurant:Nice restaurant overall, with classic upscale Italian decor.
17
+ - text: bottle of wine:Our favorite meal is a pesto pizza, the house salad, and a
18
+ good bottle of wine.
19
+ - text: Hats:Hats off to the chef.
20
+ - text: bartender:And Kruno, the beverage manager is the best bartender I have yet
21
+ to come across.
22
+ inference: false
23
+ ---
24
+
25
+ # SetFit Aspect Model with BAAI/bge-small-en-v1.5
26
+
27
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
28
+
29
+ The model has been trained using an efficient few-shot learning technique that involves:
30
+
31
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
32
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
33
+
34
+ This model was trained within the context of a larger system for ABSA, which looks like so:
35
+
36
+ 1. Use a spaCy model to select possible aspect span candidates.
37
+ 2. **Use this SetFit model to filter these possible aspect span candidates.**
38
+ 3. Use a SetFit model to classify the filtered aspect span candidates.
39
+
40
+ ## Model Details
41
+
42
+ ### Model Description
43
+ - **Model Type:** SetFit
44
+ - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
45
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
46
+ - **spaCy Model:** en_core_web_lg
47
+ - **SetFitABSA Aspect Model:** [omymble/5-train-eval-bge-small-aspect](https://huggingface.co/omymble/5-train-eval-bge-small-aspect)
48
+ - **SetFitABSA Polarity Model:** [omymble/5-train-eval-bge-small-polarity](https://huggingface.co/omymble/5-train-eval-bge-small-polarity)
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Number of Classes:** 2 classes
51
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
58
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
59
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
60
+
61
+ ### Model Labels
62
+ | Label | Examples |
63
+ |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
64
+ | aspect | <ul><li>'staff:But the staff was so horrible to us.'</li><li>"food:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"food:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul> |
65
+ | no aspect | <ul><li>"factor:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"deficiencies:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"Teodora:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li></ul> |
66
+
67
+ ## Uses
68
+
69
+ ### Direct Use for Inference
70
+
71
+ First install the SetFit library:
72
+
73
+ ```bash
74
+ pip install setfit
75
+ ```
76
+
77
+ Then you can load this model and run inference.
78
+
79
+ ```python
80
+ from setfit import AbsaModel
81
+
82
+ # Download from the 🤗 Hub
83
+ model = AbsaModel.from_pretrained(
84
+ "omymble/5-train-eval-bge-small-aspect",
85
+ "omymble/5-train-eval-bge-small-polarity",
86
+ )
87
+ # Run inference
88
+ preds = model("The food was great, but the venue is just way too busy.")
89
+ ```
90
+
91
+ <!--
92
+ ### Downstream Use
93
+
94
+ *List how someone could finetune this model on their own dataset.*
95
+ -->
96
+
97
+ <!--
98
+ ### Out-of-Scope Use
99
+
100
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
101
+ -->
102
+
103
+ <!--
104
+ ## Bias, Risks and Limitations
105
+
106
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
107
+ -->
108
+
109
+ <!--
110
+ ### Recommendations
111
+
112
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
113
+ -->
114
+
115
+ ## Training Details
116
+
117
+ ### Training Set Metrics
118
+ | Training set | Min | Median | Max |
119
+ |:-------------|:----|:--------|:----|
120
+ | Word count | 4 | 17.9296 | 37 |
121
+
122
+ | Label | Training Sample Count |
123
+ |:----------|:----------------------|
124
+ | no aspect | 71 |
125
+ | aspect | 128 |
126
+
127
+ ### Training Hyperparameters
128
+ - batch_size: (128, 128)
129
+ - num_epochs: (5, 5)
130
+ - max_steps: -1
131
+ - sampling_strategy: oversampling
132
+ - body_learning_rate: (2e-05, 1e-05)
133
+ - head_learning_rate: 0.01
134
+ - loss: CosineSimilarityLoss
135
+ - distance_metric: cosine_distance
136
+ - margin: 0.25
137
+ - end_to_end: False
138
+ - use_amp: True
139
+ - warmup_proportion: 0.1
140
+ - seed: 42
141
+ - eval_max_steps: -1
142
+ - load_best_model_at_end: True
143
+
144
+ ### Training Results
145
+ | Epoch | Step | Training Loss | Validation Loss |
146
+ |:----------:|:------:|:-------------:|:---------------:|
147
+ | 0.0059 | 1 | 0.2686 | - |
148
+ | **0.2959** | **50** | **0.2384** | **0.2531** |
149
+ | 0.5917 | 100 | 0.0139 | 0.2635 |
150
+ | 0.8876 | 150 | 0.0016 | 0.2747 |
151
+ | 1.1834 | 200 | 0.0011 | 0.2612 |
152
+ | 1.4793 | 250 | 0.001 | 0.2779 |
153
+ | 1.7751 | 300 | 0.001 | 0.2822 |
154
+
155
+ * The bold row denotes the saved checkpoint.
156
+ ### Framework Versions
157
+ - Python: 3.10.12
158
+ - SetFit: 1.0.3
159
+ - Sentence Transformers: 3.0.1
160
+ - spaCy: 3.7.4
161
+ - Transformers: 4.39.0
162
+ - PyTorch: 2.3.1+cu121
163
+ - Datasets: 2.20.0
164
+ - Tokenizers: 0.15.2
165
+
166
+ ## Citation
167
+
168
+ ### BibTeX
169
+ ```bibtex
170
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
171
+ doi = {10.48550/ARXIV.2209.11055},
172
+ url = {https://arxiv.org/abs/2209.11055},
173
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
174
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
175
+ title = {Efficient Few-Shot Learning Without Prompts},
176
+ publisher = {arXiv},
177
+ year = {2022},
178
+ copyright = {Creative Commons Attribution 4.0 International}
179
+ }
180
+ ```
181
+
182
+ <!--
183
+ ## Glossary
184
+
185
+ *Clearly define terms in order to be accessible across audiences.*
186
+ -->
187
+
188
+ <!--
189
+ ## Model Card Authors
190
+
191
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
192
+ -->
193
+
194
+ <!--
195
+ ## Model Card Contact
196
+
197
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
198
+ -->
config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "models/step_50",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "torch_dtype": "float32",
27
+ "transformers_version": "4.39.0",
28
+ "type_vocab_size": 2,
29
+ "use_cache": true,
30
+ "vocab_size": 30522
31
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "no aspect",
4
+ "aspect"
5
+ ],
6
+ "normalize_embeddings": false,
7
+ "spacy_model": "en_core_web_lg",
8
+ "span_context": 0
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5db4f1b92c015aa71b1380412369526e3316b9bb851ec86a90c542b8e42d7ef
3
+ size 133462128
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d65a600b3567420dd97e38aa72d63f0ef59700935f746a5c05d014abeaa8252
3
+ size 3919
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff