File size: 1,077 Bytes
9a5d4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
---
license: cc-by-nc-4.0
language:
- en
tags:
- English
- Bert-base
- Text Classification
pipeline_tag: text-classification
---

# RoBERTa base Fine-Tuned for Proposal Sentence Classification

## Overview

- **Language**: English
- **Model Name**: oeg/BERT-Repository-Proposal
  
## Description

This model is a fine-tuned bert base uncased model trained to classify sentences into two classes: proposal and non-proposal sentences. The training data includes sentences proposing a software or data repository. The model is trained to recognize and classify these sentences accurately.

## How to use

To use this model in Python:

```python
from transformers import RobertaForSequenceClassification, RobertaTokenizer
import torch

tokenizer = RobertaTokenizer.from_pretrained("bert-repo-proposal-tokenizer")
model = RobertaForSequenceClassification.from_pretrained("bert-repo-proposal-model")

sentence = "Your input sentence here."
inputs = tokenizer(sentence, return_tensors="pt")
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=1)