nithinraok commited on
Commit
12719e9
1 Parent(s): fd60e7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +288 -3
README.md CHANGED
@@ -1,3 +1,288 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: nemo
5
+ datasets:
6
+ - librispeech_asr
7
+ - fisher_corpus
8
+ - mozilla-foundation/common_voice_8_0
9
+ - National-Singapore-Corpus-Part-1
10
+ - vctk
11
+ - voxpopuli
12
+ - europarl
13
+ - multilingual_librispeech
14
+
15
+ thumbnail: null
16
+ tags:
17
+ - automatic-speech-recognition
18
+ - speech
19
+ - audio
20
+ - Transducer
21
+ - TDT
22
+ - FastConformer
23
+ - Conformer
24
+ - pytorch
25
+ - NeMo
26
+ - hf-asr-leaderboard
27
+ license: cc-by-4.0
28
+ widget:
29
+ - example_title: Librispeech sample 1
30
+ src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
31
+ - example_title: Librispeech sample 2
32
+ src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
33
+ model-index:
34
+ - name: parakeet-tdt_ctc-110m
35
+ results:
36
+ - task:
37
+ name: Automatic Speech Recognition
38
+ type: automatic-speech-recognition
39
+ dataset:
40
+ name: AMI (Meetings test)
41
+ type: edinburghcstr/ami
42
+ config: ihm
43
+ split: test
44
+ args:
45
+ language: en
46
+ metrics:
47
+ - name: Test WER
48
+ type: wer
49
+ value: 15.88
50
+ - task:
51
+ name: Automatic Speech Recognition
52
+ type: automatic-speech-recognition
53
+ dataset:
54
+ name: Earnings-22
55
+ type: revdotcom/earnings22
56
+ split: test
57
+ args:
58
+ language: en
59
+ metrics:
60
+ - name: Test WER
61
+ type: wer
62
+ value: 12.42
63
+ - task:
64
+ name: Automatic Speech Recognition
65
+ type: automatic-speech-recognition
66
+ dataset:
67
+ name: GigaSpeech
68
+ type: speechcolab/gigaspeech
69
+ split: test
70
+ args:
71
+ language: en
72
+ metrics:
73
+ - name: Test WER
74
+ type: wer
75
+ value: 10.52
76
+ - task:
77
+ name: Automatic Speech Recognition
78
+ type: automatic-speech-recognition
79
+ dataset:
80
+ name: LibriSpeech (clean)
81
+ type: librispeech_asr
82
+ config: other
83
+ split: test
84
+ args:
85
+ language: en
86
+ metrics:
87
+ - name: Test WER
88
+ type: wer
89
+ value: 2.4
90
+ - task:
91
+ name: Automatic Speech Recognition
92
+ type: automatic-speech-recognition
93
+ dataset:
94
+ name: LibriSpeech (other)
95
+ type: librispeech_asr
96
+ config: other
97
+ split: test
98
+ args:
99
+ language: en
100
+ metrics:
101
+ - name: Test WER
102
+ type: wer
103
+ value: 5.2
104
+ - task:
105
+ type: Automatic Speech Recognition
106
+ name: automatic-speech-recognition
107
+ dataset:
108
+ name: SPGI Speech
109
+ type: kensho/spgispeech
110
+ config: test
111
+ split: test
112
+ args:
113
+ language: en
114
+ metrics:
115
+ - name: Test WER
116
+ type: wer
117
+ value: 2.54
118
+ - task:
119
+ type: Automatic Speech Recognition
120
+ name: automatic-speech-recognition
121
+ dataset:
122
+ name: tedlium-v3
123
+ type: LIUM/tedlium
124
+ config: release1
125
+ split: test
126
+ args:
127
+ language: en
128
+ metrics:
129
+ - name: Test WER
130
+ type: wer
131
+ value: 4.16
132
+ - task:
133
+ name: Automatic Speech Recognition
134
+ type: automatic-speech-recognition
135
+ dataset:
136
+ name: Vox Populi
137
+ type: facebook/voxpopuli
138
+ config: en
139
+ split: test
140
+ args:
141
+ language: en
142
+ metrics:
143
+ - name: Test WER
144
+ type: wer
145
+ value: 6.91
146
+
147
+ metrics:
148
+ - wer
149
+ pipeline_tag: automatic-speech-recognition
150
+ ---
151
+
152
+ # Parakeet TDT-CTC 110M PnC(en)
153
+
154
+ <style>
155
+ img {
156
+ display: inline;
157
+ }
158
+ </style>
159
+
160
+ [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--TDT-lightgrey#model-badge)](#model-architecture)
161
+ | [![Model size](https://img.shields.io/badge/Params-1.1B-lightgrey#model-badge)](#model-architecture)
162
+ | [![Language](https://img.shields.io/badge/Language-en-lightgrey#model-badge)](#datasets)
163
+
164
+
165
+ `parakeet-tdt_ctc-110m` is an ASR model that transcribes speech with Punctuations and Capitalizations of the English alphabet.
166
+ This model is jointly developed by [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) and [Suno.ai](https://www.suno.ai/) teams.
167
+ It is a Large version of Hybrid FastConformer [1] TDT-CTC [2] (around 114M parameters) model.
168
+ This model has been trained with fastconformer architecture with full attention hence this model can transcribe up to 20 minutes of audio in one single pass.
169
+ This model achieves super fast RTFx values across all datasets, with an average RTFx of ~4000 on Hugging Face leaderboard evaluation sets.
170
+ See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
171
+
172
+
173
+ ## NVIDIA NeMo: Training
174
+
175
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest PyTorch version.
176
+ ```
177
+ pip install nemo_toolkit['all']
178
+ ```
179
+
180
+ ## How to Use this Model
181
+
182
+ The model is available for use in the NeMo toolkit [3], and can be used as a pre-trained checkpoint for inference or for fine-tuning on another dataset.
183
+
184
+ ### Automatically instantiate the model
185
+
186
+ ```python
187
+ import nemo.collections.asr as nemo_asr
188
+ asr_model = nemo_asr.models.ASRModel.from_pretrained(model_name="parakeet-tdt_ctc-110m")
189
+ ```
190
+
191
+ ### Transcribing using Python
192
+ First, let's get a sample
193
+ ```
194
+ wget https://dldata-public.s3.us-east-2.amazonaws.com/2086-149220-0033.wav
195
+ ```
196
+ Then simply do:
197
+ ```
198
+ asr_model.transcribe(['2086-149220-0033.wav'])
199
+ ```
200
+
201
+ ### Transcribing many audio files
202
+
203
+ By default model uses TDT to transcribe the audio files, to switch decoder to use CTC, use decoding_type='ctc'
204
+
205
+ ```shell
206
+ python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
207
+ pretrained_name="parakeet-tdt_ctc-110m"
208
+ audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
209
+ ```
210
+
211
+ ### Input
212
+
213
+ This model accepts 16000 Hz mono-channel audio (wav files) as input.
214
+
215
+ ### Output
216
+
217
+ This model provides transcribed speech as a string for a given audio sample.
218
+
219
+ ## Model Architecture
220
+
221
+ This model uses a Hybrid FastConformer-TDT-CTC architecture. FastConformer [1] is an optimized version of the Conformer model with 8x depthwise-separable convolutional downsampling. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer).
222
+
223
+
224
+ ## Training
225
+
226
+ The NeMo toolkit [3] was used for finetuning this model for 20,000 steps over `parakeet-tdt-1.1` model. This model is trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_transducer_ctc_bpe.yaml).
227
+
228
+ The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
229
+
230
+ ### Datasets
231
+
232
+ The model was trained on 36K hours of English speech collected and prepared by NVIDIA NeMo and Suno teams.
233
+
234
+ The training dataset consists of private subset with 27K hours of English speech plus 9k hours from the following public PnC datasets:
235
+
236
+ - Librispeech 960 hours of English speech
237
+ - Fisher Corpus
238
+ - National Speech Corpus Part 1
239
+ - VCTK
240
+ - VoxPopuli (EN)
241
+ - Europarl-ASR (EN)
242
+ - Multilingual Librispeech (MLS EN) - 2,000 hour subset
243
+ - Mozilla Common Voice (v7.0)
244
+
245
+ ## Performance
246
+
247
+ The performance of Automatic Speech Recognition models is measured using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
248
+
249
+ The following table summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
250
+
251
+ |**Version**|**Tokenizer**|**Vocabulary Size**|**AMI**|**Earnings-22**|**Giga Speech**|**LS test-clean**| **LS test-other** | **SPGI Speech**|**TEDLIUM-v3**|**Vox Populi**|
252
+ |---------|-----------------------|-----------------|---------|---------------|------------|-----------|---------------|-------------|------|------|
253
+ | 2.0 | BPE | 1024 | 15.88 | 12.42 | 10.52 | 2.4 | 5.2 | 2.54 | 4.16 | 6.91 |
254
+
255
+ These are greedy WER numbers without external LM. More details on evaluation can be found at [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
256
+
257
+
258
+ ## NVIDIA Riva: Deployment
259
+
260
+ [NVIDIA Riva](https://developer.nvidia.com/riva), is an accelerated speech AI SDK deployable on-prem, in all clouds, multi-cloud, hybrid, on edge, and embedded.
261
+ Additionally, Riva provides:
262
+
263
+ * World-class out-of-the-box accuracy for the most common languages with model checkpoints trained on proprietary data with hundreds of thousands of GPU-compute hours
264
+ * Best in class accuracy with run-time word boosting (e.g., brand and product names) and customization of acoustic model, language model, and inverse text normalization
265
+ * Streaming speech recognition, Kubernetes compatible scaling, and enterprise-grade support
266
+
267
+ Although this model isn’t supported yet by Riva, the [list of supported models is here](https://huggingface.co/models?other=Riva).
268
+ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
269
+
270
+ ## References
271
+ [1] [Fast Conformer with Linearly Scalable Attention for Efficient Speech Recognition](https://arxiv.org/abs/2305.05084)
272
+
273
+ [2] [Efficient Sequence Transduction by Jointly Predicting Tokens and Durations](https://arxiv.org/abs/2304.06795)
274
+
275
+ [3] [Google Sentencepiece Tokenizer](https://github.com/google/sentencepiece)
276
+
277
+ [4] [NVIDIA NeMo Toolkit](https://github.com/NVIDIA/NeMo)
278
+
279
+ [5] [Suno.ai](https://suno.ai/)
280
+
281
+ [6] [HuggingFace ASR Leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard)
282
+
283
+ [7] [Towards Measuring Fairness in AI: the Casual Conversations Dataset](https://arxiv.org/abs/2104.02821)
284
+
285
+
286
+ ## Licence
287
+
288
+ License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.