MyRepo / MyModel.py
not-lain's picture
Upload model
827dc1a verified
from transformers import PreTrainedModel
from .MyConfig import MnistConfig # local import
from torch import nn
import torch.nn.functional as F
class MnistModel(PreTrainedModel):
# pass the previously defined config class to the model
config_class = MnistConfig
def __init__(self, config):
# instantiate the model using the configuration
super().__init__(config)
# use the config to instantiate our model
self.conv1 = nn.Conv2d(1, config.conv1, kernel_size=5)
self.conv2 = nn.Conv2d(config.conv1, config.conv2, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.softmax = nn.Softmax(dim=-1)
self.criterion = nn.CrossEntropyLoss()
def forward(self, x,labels=None):
# the labels parameter allows us to finetune our model
# with the Trainer API easily
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
logits = self.softmax(x)
if labels != None :
# this will make your AI compatible with the trainer API
loss = self.criterion(logits, labels)
return {"loss": loss, "logits": logits}
return logits