File size: 13,365 Bytes
522e1ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
# -*- coding: utf-8 -*-
import os
import time
from collections import OrderedDict
from PIL import Image
import torch
import trimesh
from typing import Optional, List
from einops import repeat, rearrange
import numpy as np
from michelangelo.models.tsal.tsal_base import Latent2MeshOutput
from michelangelo.utils.misc import get_config_from_file, instantiate_from_config
from michelangelo.utils.visualizers.pythreejs_viewer import PyThreeJSViewer
from michelangelo.utils.visualizers import html_util
import gradio as gr
gradio_cached_dir = "./gradio_cached_dir"
os.makedirs(gradio_cached_dir, exist_ok=True)
save_mesh = False
state = ""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
box_v = 1.1
viewer = PyThreeJSViewer(settings={}, render_mode="WEBSITE")
image_model_config_dict = OrderedDict({
"ASLDM-256-obj": {
"config": "./configs/image_cond_diffuser_asl/image-ASLDM-256.yaml",
"ckpt_path": "./checkpoints/image_cond_diffuser_asl/image-ASLDM-256.ckpt",
},
})
text_model_config_dict = OrderedDict({
"ASLDM-256": {
"config": "./configs/text_cond_diffuser_asl/text-ASLDM-256.yaml",
"ckpt_path": "./checkpoints/text_cond_diffuser_asl/text-ASLDM-256.ckpt",
},
})
class InferenceModel(object):
model = None
name = ""
text2mesh_model = InferenceModel()
image2mesh_model = InferenceModel()
def set_state(s):
global state
state = s
print(s)
def output_to_html_frame(mesh_outputs: List[Latent2MeshOutput], bbox_size: float,
image: Optional[np.ndarray] = None,
html_frame: bool = False):
global viewer
for i in range(len(mesh_outputs)):
mesh = mesh_outputs[i]
if mesh is None:
continue
mesh_v = mesh.mesh_v.copy()
mesh_v[:, 0] += i * np.max(bbox_size)
mesh_v[:, 2] += np.max(bbox_size)
viewer.add_mesh(mesh_v, mesh.mesh_f)
mesh_tag = viewer.to_html(html_frame=False)
if image is not None:
image_tag = html_util.to_image_embed_tag(image)
frame = f"""
<table border = "1">
<tr>
<td>{image_tag}</td>
<td>{mesh_tag}</td>
</tr>
</table>
"""
else:
frame = mesh_tag
if html_frame:
frame = html_util.to_html_frame(frame)
viewer.reset()
return frame
def load_model(model_name: str, model_config_dict: dict, inference_model: InferenceModel):
global device
if inference_model.name == model_name:
model = inference_model.model
else:
assert model_name in model_config_dict
if inference_model.model is not None:
del inference_model.model
config_ckpt_path = model_config_dict[model_name]
model_config = get_config_from_file(config_ckpt_path["config"])
if hasattr(model_config, "model"):
model_config = model_config.model
model = instantiate_from_config(model_config, ckpt_path=config_ckpt_path["ckpt_path"])
model = model.to(device)
model = model.eval()
inference_model.model = model
inference_model.name = model_name
return model
def prepare_img(image: np.ndarray):
image_pt = torch.tensor(image).float()
image_pt = image_pt / 255 * 2 - 1
image_pt = rearrange(image_pt, "h w c -> c h w")
return image_pt
def prepare_model_viewer(fp):
content = f"""
<head>
<script
type="module" src="https://ajax.googleapis.com/ajax/libs/model-viewer/3.1.1/model-viewer.min.js">
</script>
</head>
<body>
<model-viewer
style="height: 150px; width: 150px;"
rotation-per-second="10deg"
id="t1"
src="file/gradio_cached_dir/{fp}"
environment-image="neutral"
camera-target="0m 0m 0m"
orientation="0deg 90deg 170deg"
shadow-intensity="1"
ar:true
auto-rotate
camera-controls>
</model-viewer>
</body>
"""
return content
def prepare_html_frame(content):
frame = f"""
<html>
<body>
{content}
</body>
</html>
"""
return frame
def prepare_html_body(content):
frame = f"""
<body>
{content}
</body>
"""
return frame
def post_process_mesh_outputs(mesh_outputs):
# html_frame = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=True)
html_content = output_to_html_frame(mesh_outputs, 2 * box_v, image=None, html_frame=False)
html_frame = prepare_html_frame(html_content)
# filename = f"{time.time()}.html"
filename = f"text-256-{time.time()}.html"
html_filepath = os.path.join(gradio_cached_dir, filename)
with open(html_filepath, "w") as writer:
writer.write(html_frame)
'''
Bug: The iframe tag does not work in Gradio.
The chrome returns "No resource with given URL found"
Solutions:
https://github.com/gradio-app/gradio/issues/884
Due to the security bitches, the server can only find files parallel to the gradio_app.py.
The path has format "file/TARGET_FILE_PATH"
'''
iframe_tag = f'<iframe src="file/gradio_cached_dir/{filename}" width="600%" height="400" frameborder="0"></iframe>'
filelist = []
filenames = []
for i, mesh in enumerate(mesh_outputs):
mesh.mesh_f = mesh.mesh_f[:, ::-1]
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
name = str(i) + "_out_mesh.obj"
filepath = gradio_cached_dir + "/" + name
mesh_output.export(filepath, include_normals=True)
filelist.append(filepath)
filenames.append(name)
filelist.append(html_filepath)
return iframe_tag, filelist
def image2mesh(image: np.ndarray,
model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
num_samples: int = 4,
guidance_scale: int = 7.5,
octree_depth: int = 7):
global device, gradio_cached_dir, image_model_config_dict, box_v
# load model
model = load_model(model_name, image_model_config_dict, image2mesh_model)
# prepare image inputs
image_pt = prepare_img(image)
image_pt = repeat(image_pt, "c h w -> b c h w", b=num_samples)
sample_inputs = {
"image": image_pt
}
mesh_outputs = model.sample(
sample_inputs,
sample_times=1,
guidance_scale=guidance_scale,
return_intermediates=False,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth,
)[0]
iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)
return iframe_tag, gr.update(value=filelist, visible=True)
def text2mesh(text: str,
model_name: str = "subsp+pk_asl_perceiver=01_01_udt=03",
num_samples: int = 4,
guidance_scale: int = 7.5,
octree_depth: int = 7):
global device, gradio_cached_dir, text_model_config_dict, text2mesh_model, box_v
# load model
model = load_model(model_name, text_model_config_dict, text2mesh_model)
# prepare text inputs
sample_inputs = {
"text": [text] * num_samples
}
mesh_outputs = model.sample(
sample_inputs,
sample_times=1,
guidance_scale=guidance_scale,
return_intermediates=False,
bounds=[-box_v, -box_v, -box_v, box_v, box_v, box_v],
octree_depth=octree_depth,
)[0]
iframe_tag, filelist = post_process_mesh_outputs(mesh_outputs)
return iframe_tag, gr.update(value=filelist, visible=True)
example_dir = './gradio_cached_dir/example/img_example'
first_page_items = [
'alita.jpg',
'burger.jpg'
'loopy.jpg'
'building.jpg',
'mario.jpg',
'car.jpg',
'airplane.jpg',
'bag.jpg',
'bench.jpg',
'ship.jpg'
]
raw_example_items = [
# (os.path.join(example_dir, x), x)
os.path.join(example_dir, x)
for x in os.listdir(example_dir)
if x.endswith(('.jpg', '.png'))
]
example_items = [x for x in raw_example_items if os.path.basename(x) in first_page_items] + [x for x in raw_example_items if os.path.basename(x) not in first_page_items]
example_text = [
["A 3D model of a car; Audi A6."],
["A 3D model of police car; Highway Patrol Charger"]
],
def set_cache(data: gr.SelectData):
img_name = os.path.basename(example_items[data.index])
return os.path.join(example_dir, img_name), os.path.join(img_name)
def disable_cache():
return ""
with gr.Blocks() as app:
gr.Markdown("# Michelangelo")
gr.Markdown("## [Github](https://github.com/NeuralCarver/Michelangelo) | [Arxiv](https://arxiv.org/abs/2306.17115) | [Project Page](https://neuralcarver.github.io/michelangelo/)")
gr.Markdown("Michelangelo is a conditional 3D shape generation system that trains based on the shape-image-text aligned latent representation.")
gr.Markdown("### Hint:")
gr.Markdown("1. We provide two APIs: Image-conditioned generation and Text-conditioned generation")
gr.Markdown("2. Note that the Image-conditioned model is trained on multiple 3D datasets like ShapeNet and Objaverse")
gr.Markdown("3. We provide some examples for you to try. You can also upload images or text as input.")
gr.Markdown("4. Welcome to share your amazing results with us, and thanks for your interest in our work!")
with gr.Row():
with gr.Column():
with gr.Tab("Image to 3D"):
img = gr.Image(label="Image")
gr.Markdown("For the best results, we suggest that the images uploaded meet the following three criteria: 1. The object is positioned at the center of the image, 2. The image size is square, and 3. The background is relatively clean.")
btn_generate_img2obj = gr.Button(value="Generate")
with gr.Accordion("Advanced settings", open=False):
image_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256-obj",choices=list(image_model_config_dict.keys()))
num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)
cache_dir = gr.Textbox(value="", visible=False)
examples = gr.Gallery(label='Examples', value=example_items, elem_id="gallery", allow_preview=False, columns=[4], object_fit="contain")
with gr.Tab("Text to 3D"):
prompt = gr.Textbox(label="Prompt", placeholder="A 3D model of motorcar; Porche Cayenne Turbo.")
gr.Markdown("For the best results, we suggest that the prompt follows 'A 3D model of CATEGORY; DESCRIPTION'. For example, A 3D model of motorcar; Porche Cayenne Turbo.")
btn_generate_txt2obj = gr.Button(value="Generate")
with gr.Accordion("Advanced settings", open=False):
text_dropdown_models = gr.Dropdown(label="Model", value="ASLDM-256",choices=list(text_model_config_dict.keys()))
num_samples = gr.Slider(label="samples", value=4, minimum=1, maximum=8, step=1)
guidance_scale = gr.Slider(label="Guidance scale", value=7.5, minimum=3.0, maximum=10.0, step=0.1)
octree_depth = gr.Slider(label="Octree Depth (for 3D model)", value=7, minimum=4, maximum=8, step=1)
gr.Markdown("#### Examples:")
gr.Markdown("1. A 3D model of a coupe; Audi A6.")
gr.Markdown("2. A 3D model of a motorcar; Hummer H2 SUT.")
gr.Markdown("3. A 3D model of an airplane; Airbus.")
gr.Markdown("4. A 3D model of a fighter aircraft; Attack Fighter.")
gr.Markdown("5. A 3D model of a chair; Simple Wooden Chair.")
gr.Markdown("6. A 3D model of a laptop computer; Dell Laptop.")
gr.Markdown("7. A 3D model of a lamp; ceiling light.")
gr.Markdown("8. A 3D model of a rifle; AK47.")
gr.Markdown("9. A 3D model of a knife; Sword.")
gr.Markdown("10. A 3D model of a vase; Plant in pot.")
with gr.Column():
model_3d = gr.HTML()
file_out = gr.File(label="Files", visible=False)
outputs = [model_3d, file_out]
img.upload(disable_cache, outputs=cache_dir)
examples.select(set_cache, outputs=[img, cache_dir])
print(f'line:404: {cache_dir}')
btn_generate_img2obj.click(image2mesh, inputs=[img, image_dropdown_models, num_samples,
guidance_scale, octree_depth],
outputs=outputs, api_name="generate_img2obj")
btn_generate_txt2obj.click(text2mesh, inputs=[prompt, text_dropdown_models, num_samples,
guidance_scale, octree_depth],
outputs=outputs, api_name="generate_txt2obj")
app.launch(server_name="0.0.0.0", server_port=8008, share=False) |