File size: 8,048 Bytes
d825ed0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
from __gin__ import dynamic_registration
import __main__ as train_script
import seqio
from t5.data import mixtures
from t5x import adafactor
from t5x.examples.t5 import network
from t5x import gin_utils
from t5x import models
from t5x import partitioning
from t5x import trainer
from t5x import utils
import tasks
# Macros:
# ==============================================================================
BATCH_SIZE = 32
DROPOUT_RATE = 0.1
EVAL_STEPS = 20
EVALUATOR_NUM_EXAMPLES = None
EVALUATOR_USE_MEMORY_CACHE = True
INITIAL_CHECKPOINT_PATH = \
'gs://nb-t5x-us-central2/norwegian_NCC_plus_English_pluss200k_balanced_bokmaal_nynorsk_t5x_large/checkpoint_1700000'
JSON_WRITE_N_RESULTS = None
LABEL_SMOOTHING = 0.0
LOSS_NORMALIZING_FACTOR = None
MIXTURE_OR_TASK_MODULE = None
MIXTURE_OR_TASK_NAME = 'translate'
MODEL = @models.EncoderDecoderModel()
MODEL_DIR = 'gs://nb-t5x-us-central2/finetuned/nynorsk_balanced_large_v1'
OPTIMIZER = @adafactor.Adafactor()
RANDOM_SEED = 0
TASK_FEATURE_LENGTHS = {'inputs': 512, 'targets': 512}
TRAIN_STEPS = 1705000
USE_CACHED_TASKS = False
USE_HARDWARE_RNG = False
VOCABULARY = @seqio.SentencePieceVocabulary()
Z_LOSS = 0.0001
# Parameters for adafactor.Adafactor:
# ==============================================================================
adafactor.Adafactor.decay_rate = 0.8
adafactor.Adafactor.logical_factor_rules = \
@adafactor.standard_logical_factor_rules()
adafactor.Adafactor.step_offset = 0
# Parameters for utils.CheckpointConfig:
# ==============================================================================
utils.CheckpointConfig.restore = @utils.RestoreCheckpointConfig()
utils.CheckpointConfig.save = @utils.SaveCheckpointConfig()
# Parameters for utils.create_learning_rate_scheduler:
# ==============================================================================
utils.create_learning_rate_scheduler.base_learning_rate = 0.001
utils.create_learning_rate_scheduler.factors = 'constant'
utils.create_learning_rate_scheduler.warmup_steps = 1000
# Parameters for infer_eval/utils.DatasetConfig:
# ==============================================================================
infer_eval/utils.DatasetConfig.batch_size = %BATCH_SIZE
infer_eval/utils.DatasetConfig.mixture_or_task_name = %MIXTURE_OR_TASK_NAME
infer_eval/utils.DatasetConfig.module = %MIXTURE_OR_TASK_MODULE
infer_eval/utils.DatasetConfig.pack = False
infer_eval/utils.DatasetConfig.seed = 42
infer_eval/utils.DatasetConfig.shuffle = False
infer_eval/utils.DatasetConfig.split = 'validation'
infer_eval/utils.DatasetConfig.task_feature_lengths = %TASK_FEATURE_LENGTHS
infer_eval/utils.DatasetConfig.use_cached = %USE_CACHED_TASKS
# Parameters for train/utils.DatasetConfig:
# ==============================================================================
train/utils.DatasetConfig.batch_size = %BATCH_SIZE
train/utils.DatasetConfig.mixture_or_task_name = %MIXTURE_OR_TASK_NAME
train/utils.DatasetConfig.module = %MIXTURE_OR_TASK_MODULE
train/utils.DatasetConfig.pack = True
train/utils.DatasetConfig.seed = None
train/utils.DatasetConfig.shuffle = True
train/utils.DatasetConfig.split = 'train'
train/utils.DatasetConfig.task_feature_lengths = %TASK_FEATURE_LENGTHS
train/utils.DatasetConfig.use_cached = %USE_CACHED_TASKS
# Parameters for train_eval/utils.DatasetConfig:
# ==============================================================================
train_eval/utils.DatasetConfig.batch_size = %BATCH_SIZE
train_eval/utils.DatasetConfig.mixture_or_task_name = %MIXTURE_OR_TASK_NAME
train_eval/utils.DatasetConfig.module = %MIXTURE_OR_TASK_MODULE
train_eval/utils.DatasetConfig.pack = True
train_eval/utils.DatasetConfig.seed = 42
train_eval/utils.DatasetConfig.shuffle = False
train_eval/utils.DatasetConfig.split = 'validation'
train_eval/utils.DatasetConfig.task_feature_lengths = %TASK_FEATURE_LENGTHS
train_eval/utils.DatasetConfig.use_cached = %USE_CACHED_TASKS
# Parameters for models.EncoderDecoderModel:
# ==============================================================================
models.EncoderDecoderModel.input_vocabulary = %VOCABULARY
models.EncoderDecoderModel.label_smoothing = %LABEL_SMOOTHING
models.EncoderDecoderModel.loss_normalizing_factor = %LOSS_NORMALIZING_FACTOR
models.EncoderDecoderModel.module = @network.Transformer()
models.EncoderDecoderModel.optimizer_def = %OPTIMIZER
models.EncoderDecoderModel.output_vocabulary = %VOCABULARY
models.EncoderDecoderModel.z_loss = %Z_LOSS
# Parameters for seqio.Evaluator:
# ==============================================================================
seqio.Evaluator.logger_cls = \
[@seqio.PyLoggingLogger, @seqio.TensorBoardLogger, @seqio.JSONLogger]
seqio.Evaluator.num_examples = %EVALUATOR_NUM_EXAMPLES
seqio.Evaluator.use_memory_cache = %EVALUATOR_USE_MEMORY_CACHE
# Parameters for seqio.JSONLogger:
# ==============================================================================
seqio.JSONLogger.write_n_results = %JSON_WRITE_N_RESULTS
# Parameters for partitioning.PjitPartitioner:
# ==============================================================================
partitioning.PjitPartitioner.logical_axis_rules = \
@partitioning.standard_logical_axis_rules()
partitioning.PjitPartitioner.model_parallel_submesh = None
partitioning.PjitPartitioner.num_partitions = 1
# Parameters for utils.RestoreCheckpointConfig:
# ==============================================================================
utils.RestoreCheckpointConfig.dtype = 'float32'
utils.RestoreCheckpointConfig.mode = 'specific'
utils.RestoreCheckpointConfig.path = %INITIAL_CHECKPOINT_PATH
# Parameters for utils.SaveCheckpointConfig:
# ==============================================================================
utils.SaveCheckpointConfig.dtype = 'float32'
utils.SaveCheckpointConfig.keep = None
utils.SaveCheckpointConfig.period = 1000
utils.SaveCheckpointConfig.save_dataset = False
# Parameters for seqio.SentencePieceVocabulary:
# ==============================================================================
seqio.SentencePieceVocabulary.sentencepiece_model_file = \
'gs://t5-data/vocabs/mc4.250000.100extra/sentencepiece.model'
# Parameters for network.T5Config:
# ==============================================================================
network.T5Config.dropout_rate = %DROPOUT_RATE
network.T5Config.dtype = 'bfloat16'
network.T5Config.emb_dim = 1024
network.T5Config.head_dim = 64
network.T5Config.logits_via_embedding = False
network.T5Config.mlp_activations = ('gelu', 'linear')
network.T5Config.mlp_dim = 2816
network.T5Config.num_decoder_layers = 24
network.T5Config.num_encoder_layers = 24
network.T5Config.num_heads = 16
network.T5Config.vocab_size = 250112
# Parameters for train_script.train:
# ==============================================================================
train_script.train.checkpoint_cfg = @utils.CheckpointConfig()
train_script.train.eval_period = 1000
train_script.train.eval_steps = %EVAL_STEPS
train_script.train.infer_eval_dataset_cfg = @infer_eval/utils.DatasetConfig()
train_script.train.inference_evaluator_cls = @seqio.Evaluator
train_script.train.model = %MODEL
train_script.train.model_dir = %MODEL_DIR
train_script.train.partitioner = @partitioning.PjitPartitioner()
train_script.train.random_seed = %RANDOM_SEED
train_script.train.summarize_config_fn = @gin_utils.summarize_gin_config
train_script.train.total_steps = %TRAIN_STEPS
train_script.train.train_dataset_cfg = @train/utils.DatasetConfig()
train_script.train.train_eval_dataset_cfg = @train_eval/utils.DatasetConfig()
train_script.train.trainer_cls = @trainer.Trainer
train_script.train.use_hardware_rng = %USE_HARDWARE_RNG
# Parameters for trainer.Trainer:
# ==============================================================================
trainer.Trainer.learning_rate_fn = @utils.create_learning_rate_scheduler()
trainer.Trainer.num_microbatches = None
# Parameters for network.Transformer:
# ==============================================================================
network.Transformer.config = @network.T5Config()
|