File size: 2,704 Bytes
f067fcd 27b41be f067fcd d1ffa4d f067fcd 1bfd6aa 2aeedcc a64c68b f067fcd dc68f91 13aad52 f067fcd dc68f91 f067fcd 602f999 f067fcd 2aeedcc 0e334c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
tags:
- image-to-text
- image-captioning
license: apache-2.0
widget:
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
example_title: Savanna
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
example_title: Football Match
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
example_title: Airport
---
# nlpconnect/vit-gpt2-image-captioning
This is an image captioning model trained by @Xardous23 in [flax ](https://github.com/huggingface/transformers/tree/main/examples/flax/image-captioning) this is pytorch version of [this](https://huggingface.co/ydshieh/vit-gpt2-coco-en-ckpts).
# The Illustrated Image Captioning using transformers
![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png)
* https://ankur3107.github.io/blogs/the-illustrated-image-captioning-using-transformers/
# Sample running code
```python
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
import torch
from PIL import Image
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
max_length = 16
num_beams = 4
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
def predict_step(image_paths):
images = []
for image_path in image_paths:
i_image = Image.open(image_path)
if i_image.mode != "RGB":
i_image = i_image.convert(mode="RGB")
images.append(i_image)
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
output_ids = model.generate(pixel_values, **gen_kwargs)
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
preds = [pred.strip() for pred in preds]
return preds
predict_step(['doctor.e16ba4e4.jpg']) # ['a woman in a hospital bed with a woman in a hospital bed']
```
# Sample running code using transformers pipeline
```python
from transformers import pipeline
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
image_to_text("https://ankur3107.github.io/assets/images/image-captioning-example.png")
# [{'generated_text': 'a soccer game with a player jumping to catch the ball '}]
```
# Contact for any help
* https://huggingface.co/ankur310794
* https://twitter.com/ankur310794
* http://github.com/ankur3107
* https://www.linkedin.com/in/ankur310794 |