nguyenvulebinh
commited on
Commit
•
a174065
1
Parent(s):
ea69391
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- en
|
5 |
+
|
6 |
+
license: mit
|
7 |
+
tags:
|
8 |
+
- mbart-50
|
9 |
+
---
|
10 |
+
|
11 |
+
# mBART-50
|
12 |
+
|
13 |
+
mBART-50 is a multilingual Sequence-to-Sequence model pre-trained using the "Multilingual Denoising Pretraining" objective. It was introduced in [Multilingual Translation with Extensible Multilingual Pretraining and Finetuning](https://arxiv.org/abs/2008.00401) paper.
|
14 |
+
|
15 |
+
## Model description
|
16 |
+
|
17 |
+
mBART-50 is a multilingual Sequence-to-Sequence model. It was introduced to show that multilingual translation models can be created through multilingual fine-tuning.
|
18 |
+
Instead of fine-tuning on one direction, a pre-trained model is fine-tuned on many directions simultaneously. mBART-50 is created using the original mBART model and extended to add extra 25 languages to support multilingual machine translation models of 50 languages. The pre-training objective is explained below.
|
19 |
+
|
20 |
+
**Multilingual Denoising Pretraining**: The model incorporates N languages by concatenating data:
|
21 |
+
`D = {D1, ..., DN }` where each Di is a collection of monolingual documents in language `i`. The source documents are noised using two schemes,
|
22 |
+
first randomly shuffling the original sentences' order, and second a novel in-filling scheme,
|
23 |
+
where spans of text are replaced with a single mask token. The model is then tasked to reconstruct the original text.
|
24 |
+
35% of each instance's words are masked by random sampling a span length according to a Poisson distribution `(λ = 3.5)`.
|
25 |
+
The decoder input is the original text with one position offset. A language id symbol `LID` is used as the initial token to predict the sentence.
|
26 |
+
|
27 |
+
|
28 |
+
## Checking
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
import torch
|
33 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
34 |
+
|
35 |
+
|
36 |
+
model = AutoModelForSeq2SeqLM.from_pretrained('facebook/mbart-large-50')
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained('facebook/mbart-large-50')
|
38 |
+
|
39 |
+
src_text = "UN Chief Says There Is <mask> Military Solution <mask> Syria"
|
40 |
+
encoded_hi = tokenizer(src_text, return_tensors="pt")
|
41 |
+
generated_output = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"],
|
42 |
+
return_dict_in_generate=True, return_dict=True, output_hidden_states=True)
|
43 |
+
text_output = tokenizer.batch_decode(generated_output.sequences, skip_special_tokens=True)
|
44 |
+
|
45 |
+
|
46 |
+
new_model = AutoModelForSeq2SeqLM.from_pretrained('nguyenvulebinh/mbart-large-50-latin-only')
|
47 |
+
new_tokenizer = AutoTokenizer.from_pretrained('nguyenvulebinh/mbart-large-50-latin-only')
|
48 |
+
new_encoded_hi = new_tokenizer(src_text, return_tensors="pt")
|
49 |
+
new_generated_output = new_model.generate(**new_encoded_hi, forced_bos_token_id=new_tokenizer.lang_code_to_id["en_XX"],
|
50 |
+
return_dict_in_generate=True, return_dict=True, output_hidden_states=True)
|
51 |
+
new_text_output = new_tokenizer.batch_decode(new_generated_output.sequences, skip_special_tokens=True)
|
52 |
+
|
53 |
+
assert text_output == new_text_output
|
54 |
+
assert torch.equal(generated_output.encoder_hidden_states[-1], new_generated_output.encoder_hidden_states[-1])
|
55 |
+
assert torch.equal(generated_output.decoder_hidden_states[-1][-1], new_generated_output.decoder_hidden_states[-1][-1])
|
56 |
+
|
57 |
+
```
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
## Languages covered
|
62 |
+
English (en_XX)
|
63 |
+
|
64 |
+
|
65 |
+
## BibTeX entry and citation info
|
66 |
+
```
|
67 |
+
@article{tang2020multilingual,
|
68 |
+
title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning},
|
69 |
+
author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan},
|
70 |
+
year={2020},
|
71 |
+
eprint={2008.00401},
|
72 |
+
archivePrefix={arXiv},
|
73 |
+
primaryClass={cs.CL}
|
74 |
+
}
|
75 |
+
```
|