--- license: openrail language: - en --- ## Bias Classification Using Bert # Overview: This is a BERT based model designed to detect bias in text data enabling users to identify whether a given text is biased or non-biased. ## Performance: The model's performance on unseen data is: ### Non-biased Precision: 0.93 Recall: 0.96 ### Biased Precision: 0.91 Recall: 0.88 ## Overall accuracy : 0.93 ## Usage To use the model, you can utilize the transformers library from Hugging Face: ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("newsmediabias/UnBIAS-classification-bert") model = AutoModelForSequenceClassification.from_pretrained("newsmediabias/UnBIAS-classification-bert") pipe = pipeline("text-classification", model="newsmediabias/UnBIAS-classification-bert") classifier("Anyone can excel at coding.") ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64fb380148411fc78972acab/eENc3vE327tVweJ8zWICb.png)