File size: 1,028 Bytes
84ad34b 7cf8f53 80dea7d b918748 80dea7d 9be3813 80dea7d d5fe84d 80dea7d 9be3813 80dea7d 84ad34b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
---
license: openrail
language:
- en
---
## Bias Classification Using Bert
# Overview:
This is a BERT based model designed to detect bias in text data enabling users to identify whether a given text is biased or non-biased.
## Performance:
The model's performance on unseen data is:
### Non-biased Precision: 0.93 Recall: 0.96
### Biased Precision: 0.91 Recall: 0.88
## Overall accuracy : 0.93
## Usage
To use the model, you can utilize the transformers library from Hugging Face:
```
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("newsmediabias/UnBIAS-classification-bert")
model = AutoModelForSequenceClassification.from_pretrained("newsmediabias/UnBIAS-classification-bert")
pipe = pipeline("text-classification", model="newsmediabias/UnBIAS-classification-bert")
classifier("Anyone can excel at coding.")
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64fb380148411fc78972acab/eENc3vE327tVweJ8zWICb.png)
|