File size: 1,028 Bytes
84ad34b
 
 
 
 
 
7cf8f53
 
 
 
 
 
 
 
 
 
 
 
80dea7d
 
 
 
 
 
 
 
 
 
 
 
b918748
 
80dea7d
9be3813
 
80dea7d
d5fe84d
80dea7d
 
9be3813
80dea7d
 
 
 
84ad34b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: openrail
language:
- en
---

## Bias Classification Using Bert

# Overview:

This is a BERT based model designed to detect bias in text data enabling users to identify whether a given text is biased or non-biased.



## Performance:

The model's performance on unseen data is:

### Non-biased	Precision: 0.93	   Recall: 0.96

### Biased	Precision: 0.91	Recall: 0.88

## Overall accuracy : 0.93



## Usage

To use the model, you can utilize the transformers library from Hugging Face:

```
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("newsmediabias/UnBIAS-classification-bert")
model = AutoModelForSequenceClassification.from_pretrained("newsmediabias/UnBIAS-classification-bert")

pipe = pipeline("text-classification", model="newsmediabias/UnBIAS-classification-bert")

classifier("Anyone can excel at coding.")
```


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64fb380148411fc78972acab/eENc3vE327tVweJ8zWICb.png)