File size: 5,926 Bytes
5cee95c f25d875 5cee95c f25d875 5cee95c f25d875 5cee95c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
pipeline_tag: text-generation
tags:
- int8
- vllm
license: gemma
---
# gemma-2-2b-it-quantized.w8a16
## Model Overview
- **Model Architecture:** Gemma 2
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT8
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 8/13/2024
- **Version:** 1.0
- **License(s):** [gemma](https://ai.google.dev/gemma/terms)
- **Model Developers:** Neural Magic
Quantized version of [gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it).
It achieves an average score of 59.05 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 59.01.
### Model Optimizations
This model was obtained by quantizing the weights of [gemma-2-2b-it](https://huggingface.co/google/gemma-2-2b-it) to INT8 data type.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
GPTQ used a 1% damping factor and 256 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/gemma-2-2b-it-quantized.w8a16"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "user", "content": "Who are you? Please respond in pirate speak!"},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_id)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
```python
from transformers import AutoTokenizer
from datasets import load_dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
model_id = "google/gemma-2-2b-it"
num_samples = 256
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = GPTQModifier(
targets="Linear",
scheme="W8A16",
ignore=["lm_head"],
dampening_frac=0.01,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("gemma-2-2b-it-quantized.w8a16")
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/gemma-2-2b-it-quantized.w8a16",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>gemma-2-2b-it</strong>
</td>
<td><strong>gemma-2-2b-it-quantized.w8a16 (this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>56.94
</td>
<td>56.81
</td>
<td>99.8%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>58.87
</td>
<td>58.70
</td>
<td>99.7%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>44.81
</td>
<td>44.88
</td>
<td>100.2%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>71.41
</td>
<td>71.34
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>68.82
</td>
<td>69.46
</td>
<td>100.9%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>53.22
</td>
<td>53.13
</td>
<td>99.8%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>59.01</strong>
</td>
<td><strong>59.05</strong>
</td>
<td><strong>100.1%</strong>
</td>
</tr>
</table> |