mwitiderrick commited on
Commit
2c602c7
1 Parent(s): f2a00f4

Create recipe.yaml

Browse files
Files changed (1) hide show
  1. recipe.yaml +47 -0
recipe.yaml ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ test_stage:
2
+ obcq_modifiers:
3
+ LogarithmicEqualizationModifier:
4
+ mappings: [
5
+ [["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
6
+ [["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
7
+ ]
8
+ QuantizationModifier:
9
+ ignore:
10
+ # These operations don't make sense to quantize
11
+ - LlamaRotaryEmbedding
12
+ - LlamaRMSNorm
13
+ - SiLUActivation
14
+ - MatMulOutput_QK
15
+ - MatMulOutput_PV
16
+ # Skip quantizing the layers with the most sensitive activations
17
+ - model.layers.21.mlp.down_proj
18
+ - model.layers.7.mlp.down_proj
19
+ - model.layers.2.mlp.down_proj
20
+ - model.layers.8.self_attn.q_proj
21
+ - model.layers.8.self_attn.k_proj
22
+ post_oneshot_calibration: true
23
+ scheme_overrides:
24
+ # Enable channelwise quantization for better accuracy
25
+ Linear:
26
+ weights:
27
+ num_bits: 8
28
+ symmetric: true
29
+ strategy: channel
30
+ MatMulLeftInput_QK:
31
+ input_activations:
32
+ num_bits: 8
33
+ symmetric: true
34
+ # For the embeddings, only weight-quantization makes sense
35
+ Embedding:
36
+ input_activations: null
37
+ weights:
38
+ num_bits: 8
39
+ symmetric: false
40
+ SparseGPTModifier:
41
+ sparsity: 0.5
42
+ block_size: 128
43
+ sequential_update: true
44
+ quantize: true
45
+ percdamp: 0.01
46
+ mask_structure: "0:0"
47
+ targets: ["re:model.layers.\\d*$"]