Create recipe.yaml
Browse files- recipe.yaml +31 -0
recipe.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
test_stage:
|
2 |
+
obcq_modifiers:
|
3 |
+
QuantizationModifier:
|
4 |
+
ignore:
|
5 |
+
# These operations don't make sense to quantize
|
6 |
+
- MistralRotaryEmbedding
|
7 |
+
- MistralRMSNorm
|
8 |
+
- SiLUActivation
|
9 |
+
# Skip quantizing the BMMs
|
10 |
+
# - QuantizableMatMul
|
11 |
+
# Skip quantizing the layers with the most sensitive activations
|
12 |
+
- model.layers.1.mlp.down_proj
|
13 |
+
- model.layers.31.mlp.down_proj
|
14 |
+
- model.layers.30.mlp.down_proj
|
15 |
+
- model.layers.30.mlp.gate_proj
|
16 |
+
- model.layers.30.mlp.up_proj
|
17 |
+
post_oneshot_calibration: true
|
18 |
+
scheme_overrides:
|
19 |
+
Embedding:
|
20 |
+
input_activations: null
|
21 |
+
weights:
|
22 |
+
num_bits: 8
|
23 |
+
symmetric: false
|
24 |
+
SparseGPTModifier:
|
25 |
+
sparsity: 0.5
|
26 |
+
block_size: 128
|
27 |
+
sequential_update: true
|
28 |
+
quantize: true
|
29 |
+
percdamp: 0.01
|
30 |
+
mask_structure: "0:0"
|
31 |
+
targets: ["re:model.layers.\\d*$"]
|