Update README.md
Browse files
README.md
CHANGED
@@ -33,7 +33,7 @@ base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
36 |
-
It achieves an average score of
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
@@ -118,11 +118,11 @@ model_stub = "meta-llama/Meta-Llama-3.1-70B-Instruct"
|
|
118 |
model_name = model_stub.split("/")[-1]
|
119 |
|
120 |
device_map = calculate_offload_device_map(
|
121 |
-
model_stub, reserve_for_hessians=False, num_gpus=2, torch_dtype=
|
122 |
)
|
123 |
|
124 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
125 |
-
model_stub, torch_dtype=
|
126 |
)
|
127 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
128 |
|
@@ -172,7 +172,7 @@ oneshot(
|
|
172 |
|
173 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
174 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
175 |
-
This version of the lm-evaluation-harness includes versions of ARC-Challenge
|
176 |
|
177 |
### Accuracy
|
178 |
|
@@ -191,71 +191,81 @@ This version of the lm-evaluation-harness includes versions of ARC-Challenge and
|
|
191 |
<tr>
|
192 |
<td>MMLU (5-shot)
|
193 |
</td>
|
194 |
-
<td>
|
195 |
</td>
|
196 |
-
<td>
|
197 |
</td>
|
198 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
</td>
|
200 |
</tr>
|
201 |
<tr>
|
202 |
<td>ARC Challenge (0-shot)
|
203 |
</td>
|
204 |
-
<td>
|
205 |
</td>
|
206 |
-
<td>
|
207 |
</td>
|
208 |
-
<td>99.
|
209 |
</td>
|
210 |
</tr>
|
211 |
<tr>
|
212 |
<td>GSM-8K-cot (8-shot, strict-match)
|
213 |
</td>
|
214 |
-
<td>
|
215 |
</td>
|
216 |
-
<td>
|
217 |
</td>
|
218 |
-
<td>
|
219 |
</td>
|
220 |
</tr>
|
221 |
<tr>
|
222 |
<td>Hellaswag (10-shot)
|
223 |
</td>
|
224 |
-
<td>86.
|
225 |
</td>
|
226 |
-
<td>
|
227 |
</td>
|
228 |
-
<td>99.
|
229 |
</td>
|
230 |
</tr>
|
231 |
<tr>
|
232 |
<td>Winogrande (5-shot)
|
233 |
</td>
|
234 |
-
<td>85.
|
235 |
</td>
|
236 |
-
<td>85.
|
237 |
</td>
|
238 |
-
<td>100.
|
239 |
</td>
|
240 |
</tr>
|
241 |
<tr>
|
242 |
-
<td>TruthfulQA (0-shot)
|
243 |
</td>
|
244 |
-
<td>
|
245 |
</td>
|
246 |
-
<td>
|
247 |
</td>
|
248 |
-
<td>
|
249 |
</td>
|
250 |
</tr>
|
251 |
<tr>
|
252 |
<td><strong>Average</strong>
|
253 |
</td>
|
254 |
-
<td><strong>
|
255 |
</td>
|
256 |
-
<td><strong>
|
257 |
</td>
|
258 |
-
<td><strong>99.
|
259 |
</td>
|
260 |
</tr>
|
261 |
</table>
|
@@ -274,6 +284,17 @@ lm_eval \
|
|
274 |
--batch_size auto
|
275 |
```
|
276 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
#### ARC-Challenge
|
278 |
```
|
279 |
lm_eval \
|
|
|
33 |
- **Model Developers:** Neural Magic
|
34 |
|
35 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
36 |
+
It achieves an average score of 84.29 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 84.40.
|
37 |
|
38 |
### Model Optimizations
|
39 |
|
|
|
118 |
model_name = model_stub.split("/")[-1]
|
119 |
|
120 |
device_map = calculate_offload_device_map(
|
121 |
+
model_stub, reserve_for_hessians=False, num_gpus=2, torch_dtype="auto"
|
122 |
)
|
123 |
|
124 |
model = SparseAutoModelForCausalLM.from_pretrained(
|
125 |
+
model_stub, torch_dtype="auto", device_map=device_map
|
126 |
)
|
127 |
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
128 |
|
|
|
172 |
|
173 |
The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA.
|
174 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
175 |
+
This version of the lm-evaluation-harness includes versions of ARC-Challenge, GSM-8K, MMLU, and MMLU-cot that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
176 |
|
177 |
### Accuracy
|
178 |
|
|
|
191 |
<tr>
|
192 |
<td>MMLU (5-shot)
|
193 |
</td>
|
194 |
+
<td>83.83
|
195 |
</td>
|
196 |
+
<td>83.73
|
197 |
</td>
|
198 |
+
<td>99.88%
|
199 |
+
</td>
|
200 |
+
</tr>
|
201 |
+
<tr>
|
202 |
+
<td>MMLU-cot (0-shot)
|
203 |
+
</td>
|
204 |
+
<td>86.01
|
205 |
+
</td>
|
206 |
+
<td>85.44
|
207 |
+
</td>
|
208 |
+
<td>99.34%
|
209 |
</td>
|
210 |
</tr>
|
211 |
<tr>
|
212 |
<td>ARC Challenge (0-shot)
|
213 |
</td>
|
214 |
+
<td>93.26
|
215 |
</td>
|
216 |
+
<td>92.92
|
217 |
</td>
|
218 |
+
<td>99.64%
|
219 |
</td>
|
220 |
</tr>
|
221 |
<tr>
|
222 |
<td>GSM-8K-cot (8-shot, strict-match)
|
223 |
</td>
|
224 |
+
<td>94.92
|
225 |
</td>
|
226 |
+
<td>94.54
|
227 |
</td>
|
228 |
+
<td>99.60%
|
229 |
</td>
|
230 |
</tr>
|
231 |
<tr>
|
232 |
<td>Hellaswag (10-shot)
|
233 |
</td>
|
234 |
+
<td>86.75
|
235 |
</td>
|
236 |
+
<td>86.64
|
237 |
</td>
|
238 |
+
<td>99.87%
|
239 |
</td>
|
240 |
</tr>
|
241 |
<tr>
|
242 |
<td>Winogrande (5-shot)
|
243 |
</td>
|
244 |
+
<td>85.32
|
245 |
</td>
|
246 |
+
<td>85.95
|
247 |
</td>
|
248 |
+
<td>100.7%
|
249 |
</td>
|
250 |
</tr>
|
251 |
<tr>
|
252 |
+
<td>TruthfulQA (0-shot, mc2)
|
253 |
</td>
|
254 |
+
<td>60.68
|
255 |
</td>
|
256 |
+
<td>60.84
|
257 |
</td>
|
258 |
+
<td>100.2%
|
259 |
</td>
|
260 |
</tr>
|
261 |
<tr>
|
262 |
<td><strong>Average</strong>
|
263 |
</td>
|
264 |
+
<td><strong>84.40</strong>
|
265 |
</td>
|
266 |
+
<td><strong>84.29</strong>
|
267 |
</td>
|
268 |
+
<td><strong>99.88%</strong>
|
269 |
</td>
|
270 |
</tr>
|
271 |
</table>
|
|
|
284 |
--batch_size auto
|
285 |
```
|
286 |
|
287 |
+
#### MMLU-cot
|
288 |
+
```
|
289 |
+
lm_eval \
|
290 |
+
--model vllm \
|
291 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=2 \
|
292 |
+
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
293 |
+
--apply_chat_template \
|
294 |
+
--num_fewshot 0 \
|
295 |
+
--batch_size auto
|
296 |
+
```
|
297 |
+
|
298 |
#### ARC-Challenge
|
299 |
```
|
300 |
lm_eval \
|