--- tags: - int8 - vllm language: - en - de - fr - it - pt - hi - es - th pipeline_tag: text-generation license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-405B-Instruct --- # Meta-Llama-3.1-405B-Instruct-quantized.w8a16 ## Model Overview - **Model Architecture:** Meta-Llama-3 - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT8 - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct), this models is intended for assistant-like chat. - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). - **Release Date:** 8/19/2024 - **Version:** 1.0 - **License(s):** Llama3.1 - **Model Developers:** Neural Magic Quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct). It achieves scores within 0.3% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA. ### Model Optimizations This model was obtained by quantizing the weights of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%. Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT8 and floating point representations of the quantized weights. The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. GPTQ used a 1% damping factor and 512 sequences sequences taken from Neural Magic's [LLM compression calibration dataset](https://huggingface.co/datasets/neuralmagic/LLM_compression_calibration). ## Deployment This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm import LLM, SamplingParams from transformers import AutoTokenizer model_id = "neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w8a16" number_gpus = 8 max_model_len = 8192 sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) tokenizer = AutoTokenizer.from_pretrained(model_id) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False) llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len) outputs = llm.generate(prompts, sampling_params) generated_text = outputs[0].outputs[0].text print(generated_text) ``` vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below (using 8 A100 80GB GPUs). ```python from transformers import AutoTokenizer from datasets import load_dataset from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers.compression.helpers import custom_offload_device_map model_id = "meta-llama/Meta-Llama-3.1-405B-Instruct" num_samples = 512 max_seq_len = 4096 num_gpus = 8 max_memory_per_gpu = "20GB" tokenizer = AutoTokenizer.from_pretrained(model_id) def preprocess_fn(example): return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") ds = ds.shuffle().select(range(num_samples)) ds = ds.map(preprocess_fn) recipe = GPTQModifier( sequential=True targets="Linear", scheme="W8A16", ignore=["lm_head"], dampening_frac=0.01, ) device_map = custom_offload_device_map( model_id, max_memory_per_gpu=max_memory_per_gpu, num_gpus=num_gpus, torch_dtype="auto", ) model = SparseAutoModelForCausalLM.from_pretrained( model_id, device_map="auto", ) oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=max_seq_len, num_calibration_samples=num_samples, ) model.save_pretrained("Meta-Llama-3.1-405B-Instruct-quantized.w8a16") ``` ## Evaluation The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande and TruthfulQA. Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine. This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals). **Note:** Results have been updated after Meta modified the chat template. ### Accuracy #### Open LLM Leaderboard evaluation scores
Benchmark | Meta-Llama-3.1-405B-Instruct | Meta-Llama-3.1-405B-Instruct-quantized.w8a16 (this model) | Recovery |
MMLU (5-shot) | 87.38 | 87.59 | 100.2% |
MMLU (CoT, 0-shot) | 88.26 | 88.19 | 99.9% |
ARC Challenge (0-shot) | 94.97 | 94.80 | 99.8% |
GSM-8K (CoT, 8-shot, strict-match) | 96.44 | 96.13 | 100.8% |
Hellaswag (10-shot) | 88.33 | 88.52 | 100.2% |
Winogrande (5-shot) | 87.21 | 87.92 | 100.8% |
TruthfulQA (0-shot, mc2) | 64.64 | 65.41 | 101.2% |
Average | 86.75 | 86.94 | 100.2% |