File size: 11,632 Bytes
2abcd4a 7d1f72d 2abcd4a 7d1f72d 2abcd4a 9db6306 2abcd4a 9db6306 a8c9e50 6b753ea 2abcd4a 6b753ea 2abcd4a 9db6306 2abcd4a 9db6306 2abcd4a 9db6306 2abcd4a 6b753ea 2abcd4a 9db6306 2abcd4a 9db6306 2abcd4a 6b753ea 2abcd4a 9db6306 2abcd4a 9db6306 2abcd4a 6b753ea 2abcd4a 9db6306 2abcd4a 9db6306 91a872b 6b753ea 2abcd4a 9db6306 91a872b 9db6306 2abcd4a 6b753ea 2abcd4a 9db6306 2abcd4a 9db6306 2abcd4a 6b753ea 2abcd4a 9db6306 2abcd4a 9db6306 2abcd4a 6b753ea 2abcd4a 9db6306 2abcd4a 6b753ea 2abcd4a 6b753ea 2abcd4a 6b753ea 2abcd4a 9db6306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
---
tags:
- int4
- vllm
language:
- en
- de
- fr
- it
- pt
- hi
- es
- th
pipeline_tag: text-generation
license: llama3.1
base_model: meta-llama/Meta-Llama-3.1-405B-Instruct
---
# Meta-Llama-3.1-405B-Instruct-quantized.w4a16
## Model Overview
- **Model Architecture:** Meta-Llama-3
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 8/9/2024
- **Version:** 1.0
- **License(s):** Llama3.1
- **Model Developers:** Neural Magic
This model is a quantized version of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct).
It was evaluated on a several tasks to assess the its quality in comparison to the unquatized model, including multiple-choice, math reasoning, and open-ended text generation.
Meta-Llama-3.1-405B-Instruct-quantized.w4a16 achieves 98.7% recovery for the Arena-Hard evaluation, 100.0% for OpenLLM v1 (using Meta's prompting when available), 99.0% for OpenLLM v2, 98.0% for HumanEval pass@1, and 98.5% for HumanEval+ pass@1.
### Model Optimizations
This model was obtained by quantizing the weights of [Meta-Llama-3.1-405B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-405B-Instruct) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the INT4 and floating point representations of the quantized weights.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. GPTQ used a 1% damping factor and 512 sequences of 4,096 random tokens.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16"
number_gpus = 8
max_model_len = 4096
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
## Creation
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
```python
from transformers import AutoTokenizer
from datasets import Dataset
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
import random
model_id = "meta-llama/Meta-Llama-3.1-405B-Instruct"
num_samples = 512
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_id)
preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}
dataset_name = "neuralmagic/LLM_compression_calibration"
dataset = load_dataset(dataset_name, split="train")
ds = dataset.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
recipe = GPTQModifier(
targets="Linear",
scheme="W4A16",
ignore=["lm_head"],
dampening_frac=0.01,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("Meta-Llama-3.1-405B-Instruct-quantized.w4a16")
```
## Evaluation
This model was evaluated on the well-known Arena-Hard, OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks.
In all cases, model outputs were generated with the [vLLM](https://docs.vllm.ai/en/stable/) engine.
Arena-Hard evaluations were conducted using the [Arena-Hard-Auto](https://github.com/lmarena/arena-hard-auto) repository.
The model generated a single answer for each prompt form Arena-Hard, and each answer was judged twice by GPT-4.
We report below the scores obtained in each judgement and the average.
OpenLLM v1 and v2 evaluations were conducted using Neural Magic's fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct).
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-405B-Instruct-evals) and a few fixes to OpenLLM v2 tasks.
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the [EvalPlus](https://github.com/neuralmagic/evalplus) repository.
Detailed model outputs are available as HuggingFace datasets for [Arena-Hard](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-arena-hard-evals), [OpenLLM v2](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-leaderboard-v2-evals), and [HumanEval](https://huggingface.co/datasets/neuralmagic/quantized-llama-3.1-humaneval-evals).
**Note:** Results have been updated after Meta modified the chat template.
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Meta-Llama-3.1-405B-Instruct </strong>
</td>
<td><strong>Meta-Llama-3.1-405B-Instruct-quantized.w4a16 (this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td><strong>Arena Hard</strong>
</td>
<td>67.4 (67.3 / 67.5)
</td>
<td>66.5 (66.5 / 66.4)
</td>
<td>98.7%
</td>
</tr>
<tr>
<td><strong>OpenLLM v1</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>87.4
</td>
<td>87.2
</td>
<td>99.8%
</td>
</tr>
<tr>
<td>ARC Challenge (0-shot)
</td>
<td>95.0
</td>
<td>95.3
</td>
<td>100.4%
</td>
</tr>
<tr>
<td>GSM-8K (CoT, 8-shot, strict-match)
</td>
<td>96.4
</td>
<td>96.3
</td>
<td>99.8%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>88.3
</td>
<td>88.3
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>87.2
</td>
<td>87.4
</td>
<td>100.2%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>64.6
</td>
<td>65.3
</td>
<td>101.0%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>86.8</strong>
</td>
<td><strong>86.8</strong>
</td>
<td><strong>100.0%</strong>
</td>
</tr>
<tr>
<td><strong>OpenLLM v2</strong>
</td>
</tr>
<tr>
<td>MMLU-Pro (5-shot)
</td>
<td>59.7
</td>
<td>59.4
</td>
<td>99.3%
</td>
</tr>
<tr>
<td>IFEval (0-shot)
</td>
<td>87.7
</td>
<td>88.0
</td>
<td>100.4%
</td>
</tr>
<tr>
<td>BBH (3-shot)
</td>
<td>67.0
</td>
<td>67.5
</td>
<td>100.7%
</td>
</tr>
<tr>
<td>Math-|v|-5 (4-shot)
</td>
<td>39.0
</td>
<td>37.6
</td>
<td>96.5%
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>19.5
</td>
<td>17.5
</td>
<td>89.8%
</td>
</tr>
<tr>
<td>MuSR (0-shot)
</td>
<td>19.5
</td>
<td>19.4
</td>
<td>99.5%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>48.7</strong>
</td>
<td><strong>48.2</strong>
</td>
<td><strong>99.0%</strong>
</td>
</tr>
<tr>
<td><strong>Coding</strong>
</td>
</tr>
<tr>
<td>HumanEval pass@1
</td>
<td>86.8
</td>
<td>85.1
</td>
<td>98.0%
</td>
</tr>
<tr>
<td>HumanEval+ pass@1
</td>
<td>80.1
</td>
<td>78.9
</td>
<td>98.5%
</td>
</tr>
</table>
### Reproduction
The results were obtained using the following commands:
#### MMLU
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=10,tensor_parallel_size=8 \
--tasks mmlu_llama_3.1_instruct \
--apply_chat_template \
--fewshot_as_multiturn \
--num_fewshot 5 \
--batch_size auto
```
#### ARC-Challenge
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
--tasks arc_challenge_llama_3.1_instruct \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
```
#### GSM-8K
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8 \
--tasks gsm8k_cot_llama_3.1_instruct \
--apply_chat_template \
--fewshot_as_multiturn \
--num_fewshot 8 \
--batch_size auto
```
#### Hellaswag
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
--tasks hellaswag \
--num_fewshot 10 \
--batch_size auto
```
#### Winogrande
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
--tasks winogrande \
--num_fewshot 5 \
--batch_size auto
```
#### TruthfulQA
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8 \
--tasks truthfulqa \
--num_fewshot 0 \
--batch_size auto
```
#### OpenLLM v2
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,tensor_parallel_size=8,enable_chunked_prefill=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
```
#### HumanEval and HumanEval+
##### Generation
```
python3 codegen/generate.py \
--model neuralmagic/Meta-Llama-3.1-405B-Instruct-quantized.w4a16 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval \
--tp 8
```
##### Sanitization
```
python3 evalplus/sanitize.py \
humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-quantized.w4a16_vllm_temp_0.2
```
##### Evaluation
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/neuralmagic--Meta-Llama-3.1-405B-Instruct-quantized.w4a16_vllm_temp_0.2-sanitized
```
|