---
library_name: sklearn
license: mit
tags:
- sklearn
- skops
- text-classification
model_format: pickle
model_file: multiskill-classifiert4_v38_0.pkl
---
# Model description
[More Information Needed]
## Intended uses & limitations
[More Information Needed]
## Training Procedure
[More Information Needed]
### Hyperparameters
Click to expand
| Hyperparameter | Value |
|------------------------------|---------------------------------------------------------------------------------------------------------|
| memory | |
| steps | [('transformer', MultiSkillTransformer()), ('clf', SVC(C=1, class_weight='balanced', kernel='linear'))] |
| verbose | False |
| transformer | MultiSkillTransformer() |
| clf | SVC(C=1, class_weight='balanced', kernel='linear') |
| clf__C | 1 |
| clf__break_ties | False |
| clf__cache_size | 200 |
| clf__class_weight | balanced |
| clf__coef0 | 0.0 |
| clf__decision_function_shape | ovr |
| clf__degree | 3 |
| clf__gamma | scale |
| clf__kernel | linear |
| clf__max_iter | -1 |
| clf__probability | False |
| clf__random_state | |
| clf__shrinking | True |
| clf__tol | 0.001 |
| clf__verbose | False |
Pipeline(steps=[('transformer', MultiSkillTransformer()),('clf', SVC(C=1, class_weight='balanced', kernel='linear'))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
Pipeline(steps=[('transformer', MultiSkillTransformer()),('clf', SVC(C=1, class_weight='balanced', kernel='linear'))])
MultiSkillTransformer()
SVC(C=1, class_weight='balanced', kernel='linear')