--- license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer - bleu model-index: - name: wav2vec2-mms-1b-malayalam-colab-CV17.0-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ml split: test args: ml metrics: - name: Wer type: wer value: 0.5283687943262412 - name: Bleu type: bleu value: 0.1996948603256558 --- # wav2vec2-mms-1b-malayalam-colab-CV17.0-v2 This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2965 - Wer: 0.5284 - Cer: 0.0934 - Bleu: 0.1997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.15 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Bleu | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:|:------:| | 5.5563 | 3.1496 | 200 | 0.3157 | 0.5580 | 0.1055 | 0.1800 | | 0.3888 | 6.2992 | 400 | 0.2983 | 0.5471 | 0.1003 | 0.1906 | | 0.3328 | 9.4488 | 600 | 0.3008 | 0.5542 | 0.1002 | 0.1634 | | 0.3006 | 12.5984 | 800 | 0.2821 | 0.5368 | 0.0984 | 0.1888 | | 0.2743 | 15.7480 | 1000 | 0.2913 | 0.5329 | 0.0968 | 0.1813 | | 0.2461 | 18.8976 | 1200 | 0.2822 | 0.5319 | 0.0957 | 0.1937 | | 0.2346 | 22.0472 | 1400 | 0.2933 | 0.5335 | 0.0942 | 0.1848 | | 0.2112 | 25.1969 | 1600 | 0.2885 | 0.5300 | 0.0947 | 0.1900 | | 0.2006 | 28.3465 | 1800 | 0.2944 | 0.5329 | 0.0939 | 0.1870 | | 0.1879 | 31.4961 | 2000 | 0.2965 | 0.5284 | 0.0934 | 0.1997 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1