File size: 52,336 Bytes
54ba632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 |
# coding=utf-8
# Copyright 2018 HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MiniCPM model.
"""
from typing import Dict, Optional, Union
import inspect
import math
import torch
from flash_attn import bert_padding
from flash_attn.flash_attn_interface import (
flash_attn_varlen_func,
flash_attn_with_kvcache,
)
from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
from nanotron import distributed as dist
from nanotron import logging
from nanotron.config import ParallelismArgs, RecomputeGranularity
from nanotron.generation.generate_store import AttachableStore
from nanotron.logging import log_rank
from nanotron.models import NanotronModel
from nanotron.nn.layer_norm import TritonRMSNorm
from nanotron.parallel import ParallelContext
from nanotron.parallel.parameters import NanotronParameter
from nanotron.parallel.pipeline_parallel.block import (
PipelineBlock,
TensorPointer,
)
from nanotron.parallel.pipeline_parallel.p2p import P2P
from nanotron.parallel.tensor_parallel.functional import sharded_cross_entropy
from nanotron.parallel.tensor_parallel.nn import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelLinearMode,
TensorParallelRowLinear,
)
from nanotron.random import RandomStates
from nanotron.utils import checkpoint_method
from nanotron.nn.activations import ACT2FN
from torch import nn
from config_minicpm import MiniCPMConfig
logger = logging.get_logger(__name__)
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_varlen_func).parameters)
class RotaryEmbedding(nn.Module):
def __init__(self, dim: int, end: int, theta: float = 10000.0):
super().__init__()
assert dim % 2 == 0
self.dim = dim
self.end = end
self.theta = theta
# TODO @nouamane: Figure out why we can't set `DTypeInvariantTensor` ...
# TODO @thomasw21: Complex buffers break DDP, instead we store float and view them as complex
self.freqs_cis: torch.Tensor
self._initialized_buffer = False
def init_rotary_embeddings(self):
if self._initialized_buffer is True:
# Buffer if already initialized
return
self.register_buffer(
"freqs_cis",
torch.empty(self.end, self.dim // 2, 2, dtype=torch.float, device="cuda"),
persistent=False,
)
assert self.freqs_cis.device.type == "cuda"
# TODO @nouamane: One we figure out how to do the DTypeInvariantTensor, this can be removed and changed to an assert
if self.freqs_cis.dtype != torch.float:
self.freqs_cis = self.freqs_cis.to(torch.float)
assert self.freqs_cis.dtype == torch.float
freqs = 1.0 / (
self.theta
** (torch.arange(0, self.dim, 2, dtype=torch.float, device="cuda")[: (self.dim // 2)] / self.dim)
)
t = torch.arange(self.end, device="cuda")
freqs = torch.outer(t, freqs).float()
complex_freqs = torch.polar(torch.ones_like(freqs), freqs)
freqs = torch.view_as_real(complex_freqs)
self.freqs_cis.copy_(freqs)
self._initialized_buffer = True
def forward(
self,
x: torch.Tensor, # [batch_size, seq_length, num_heads, d_qk]
position_ids: Optional[torch.LongTensor], # [batch_size, seq_length]
):
batch_size, seq_length, num_heads, inner_dim = x.shape
while (
position_ids is not None and position_ids[-1, -1] >= self.end
) or seq_length >= self.end: # TODO @nouamane: check if this causes cpu-gpu sync
self.end *= 2
self._initialized_buffer = False
if self._initialized_buffer is False:
self.init_rotary_embeddings()
dtype = x.dtype
assert inner_dim % 2 == 0
x = x.view(
batch_size, seq_length, num_heads, inner_dim // 2, 2
) # [batch_size, q_length, num_heads, inner_dim]
if x.dtype == torch.bfloat16:
x = x.float()
complex_x = torch.view_as_complex(x) # [batch_size, q_length, num_heads, inner_dim // 2]
if position_ids is None:
freqs_cis = self.freqs_cis[None, :seq_length, None, :]
else:
# TODO(kunhao): Should None follow the num_heads dimension?
if position_ids[-1, -1] < 0 or position_ids[-1, -1] >= self.end: # Quick test hopefully
raise ValueError(f"Position ids must be in the range [0, {self.end}), but got {position_ids}")
freqs_cis = self.freqs_cis[position_ids][:, :, None, :]
complex_freqs = torch.view_as_complex(freqs_cis)
x_out = torch.view_as_real(complex_x * complex_freqs).view(batch_size, seq_length, num_heads, inner_dim)
return x_out.type(dtype)
class GLUActivation(nn.Module):
def __init__(self, act_fn_name: str):
super().__init__()
self.act = ACT2FN[act_fn_name]
def forward(self, merged_states: torch.Tensor):
gate_states, up_states = torch.split(merged_states, merged_states.shape[-1] // 2, dim=-1)
return self.act(gate_states) * up_states
class MLP(nn.Module):
def __init__(
self,
config: MiniCPMConfig,
parallel_config: Optional[ParallelismArgs],
tp_pg: dist.ProcessGroup,
):
super().__init__()
# TODO @thomasw21: refactor so that we store that default in a single place.
tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
tp_linear_async_communication = (
parallel_config.tp_linear_async_communication if parallel_config is not None else False
)
gate_up_contiguous_chunks = (
config.intermediate_size, # shape of gate_linear
config.intermediate_size, # shape of up_linear
)
self.gate_up_proj = TensorParallelColumnLinear(
config.hidden_size,
2 * config.intermediate_size,
pg=tp_pg,
mode=tp_mode,
bias=False,
async_communication=tp_linear_async_communication,
contiguous_chunks=gate_up_contiguous_chunks,
)
self.down_proj = TensorParallelRowLinear(
config.intermediate_size,
config.hidden_size,
pg=tp_pg,
mode=tp_mode,
bias=False,
async_communication=tp_linear_async_communication and tp_mode is TensorParallelLinearMode.REDUCE_SCATTER,
)
# TODO @nouamane: why can't we torch.jit.script GLUActivation?
self.split_silu_mul = GLUActivation(config.hidden_act)
def forward(self, hidden_states): # [seq_length, batch_size, hidden_dim]
merged_states = self.gate_up_proj(hidden_states)
hidden_states = self.down_proj(self.split_silu_mul(merged_states))
return {"hidden_states": hidden_states}
class CoreAttention(nn.Module):
def __init__(self, config: MiniCPMConfig, parallel_config: Optional[ParallelismArgs], layer_idx: int):
super().__init__()
# TODO @thomasw21: GPT has a weird `d_kv` config which I'm guessing is essentically a `d_qkv`
assert (
config.hidden_size % config.num_attention_heads == 0
), f"Hidden size {config.hidden_size} must be divisible by number of attention heads {config.num_attention_heads}."
self.d_qk = config.hidden_size // config.num_attention_heads
self.d_v = config.hidden_size // config.num_attention_heads
self.dropout = config.attn_pdrop
self.checkpoint_attention = False # Because flash_attn already does checkpointing
# if config.sliding_window_size is not None:
# assert (
# _flash_supports_window_size
# ), "Current version of flash-attn doesn't support sliding window: `pip install flash-attn>=2.3`"
# self.sliding_window_size = config.sliding_window_size # if layer_idx not in config.global_attn_layers else None
@checkpoint_method(attr_name="checkpoint_attention")
def forward(
self,
query_states: torch.Tensor, # [batch_size * q_length, num_heads, inner_dim]
key_states: torch.Tensor, # [batch_size * kv_length, 1, inner_dim]
value_states: torch.Tensor, # [batch_size * kv_length, 1, inner_dim]
q_sequence_mask: torch.Tensor, # torch.BoolTensor [batch_size, q_length] (can be broadcasted to that size)
kv_sequence_mask: torch.Tensor, # torch.BoolTensor [batch_size, kv_length] (can be broadcasted to that size)
):
# TODO @thomasw21: Compute once, instead of computing for each layers.
cu_seqlens_q = torch.zeros((q_sequence_mask.shape[0] + 1), dtype=torch.int32, device=query_states.device)
cu_seqlens_k = torch.zeros((kv_sequence_mask.shape[0] + 1), dtype=torch.int32, device=query_states.device)
torch.cumsum(q_sequence_mask.sum(-1, dtype=torch.int32), dim=0, dtype=torch.int32, out=cu_seqlens_q[1:])
torch.cumsum(kv_sequence_mask.sum(-1, dtype=torch.int32), dim=0, dtype=torch.int32, out=cu_seqlens_k[1:])
# TODO(kunhao): flash attn's causal means that the query can only attend to the keys before it. This is not
# what we want if we are using kv cache. This is a hack as we always have q_length == 1 when using kv cache.
causal = False if q_sequence_mask.shape[1] == 1 else True
attn_output = flash_attn_varlen_func(
q=query_states,
k=key_states,
v=value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=q_sequence_mask.shape[1],
max_seqlen_k=kv_sequence_mask.shape[1],
dropout_p=self.dropout if self.training else 0.0,
softmax_scale=None, # defaults to 1/sqrt(d_qk)
causal=causal,
# window_size=(self.sliding_window_size - 1, 0) if self.sliding_window_size is not None else (-1, -1),
return_attn_probs=False,
)
return attn_output
def pad_to_right(tensor, mask, new_tensor=None):
"""Transform a left-padded tensor into a right-padded tensor. (Useful for prefilling key/value states)
Args:
tensor: (batch_size, seqlen, d1, d2)
mask: (batch_size, seqlen)
new_tensor: (batch_size, new_tensor_seqlen, d1, d2)
Returns:
new_tensor: (batch_size, new_tensor_seqlen, d1, d2)
right_padded_mask: (batch_size, seqlen)
"""
# First, we need to find the number of padding for each row
unpad_seqlens = mask.sum(1)
# Then, we need to find the maximum length of the tensor
max_seqlen = mask.shape[1]
# We can then create the indices to select the padded values
# The indices are the same for each row
indices = torch.arange(max_seqlen, device=mask.device)
# We can then create the mask for the padded values
right_padded_mask = indices < unpad_seqlens[:, None]
# We select the useful values
useful_values = tensor[mask]
# We create the new tensor (if not provided)
new_tensor = torch.zeros_like(tensor) if new_tensor is None else new_tensor
# We fill the new tensor with the useful values
new_tensor[:, : right_padded_mask.shape[1], :, :][right_padded_mask] = useful_values
return new_tensor, right_padded_mask
class CausalSelfAttention(nn.Module, AttachableStore):
def __init__(
self,
config: MiniCPMConfig,
parallel_config: Optional[ParallelismArgs],
tp_pg: dist.ProcessGroup,
layer_idx: int,
):
super().__init__()
# Tensor parallel considerations: We split tensors along head dimension
assert (
config.num_attention_heads % tp_pg.size() == 0
), f"Number of attention heads ({config.num_attention_heads}) must be divisible by TP size ({tp_pg.size()})."
try:
assert (
config.num_key_value_heads % tp_pg.size() == 0
), f"Number of key/value heads ({config.num_key_value_heads}) must be divisible by TP size ({tp_pg.size()})."
except AttributeError:
log_rank(
"WARNING: num_key_value_heads not defined, assuming it is equal to num_attention_heads",
logger=logger,
level=logging.WARNING,
rank=0,
)
# If num_key_value_heads is not defined, we assume that it is equal to num_attention_heads
config.num_key_value_heads = config.num_attention_heads
assert (
config.num_attention_heads % config.num_key_value_heads == 0
), f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of key/value heads ({config.num_key_value_heads})."
self.n_local_q_heads = config.num_attention_heads // tp_pg.size()
self.n_local_kv_heads = config.num_key_value_heads // tp_pg.size()
self.n_repeats = config.num_attention_heads // config.num_key_value_heads
self.is_gqa = config.num_attention_heads != config.num_key_value_heads # Whether we are using GQA or not
self.d_qk = config.hidden_size // config.num_attention_heads
self.d_v = config.hidden_size // config.num_attention_heads
self.d_model = config.hidden_size
# TODO @thomasw21: refactor so that we store that default in a single place.
tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
tp_linear_async_communication = (
parallel_config.tp_linear_async_communication if parallel_config is not None else False
)
# build the slice config for self.qkv for save/load
# shard are done within the contiguous chunk
qkv_contiguous_chunks = (
config.num_attention_heads * self.d_qk, # shape of q
config.num_key_value_heads * self.d_qk, # shape of k
config.num_key_value_heads * self.d_qk, # shape of v
)
self.qkv_proj = TensorParallelColumnLinear(
self.d_model,
config.num_attention_heads * self.d_qk + 2 * config.num_key_value_heads * self.d_qk,
pg=tp_pg,
mode=tp_mode,
bias=False,
async_communication=tp_linear_async_communication,
contiguous_chunks=qkv_contiguous_chunks,
)
# TODO(kunhao): We want to have only one version per device and not one version per layer.
self.rotary_embedding = RotaryEmbedding(
dim=self.d_qk,
end=config.max_position_embeddings,
theta=config.rope_theta
)
# NOTE: Only supported for training (TODO(fmom): position_ids not supported yet)
self.flash_rotary_embedding = FlashRotaryEmbedding(dim=self.d_qk, base=config.rope_theta, interleaved=True)
self.o_proj = TensorParallelRowLinear(
config.num_attention_heads * self.d_qk,
self.d_model,
pg=tp_pg,
mode=tp_mode,
bias=False,
async_communication=tp_linear_async_communication,
)
self.attention = CoreAttention(
config,
parallel_config=parallel_config,
layer_idx=layer_idx,
)
self.prefill_kv_len = (
config.max_position_embeddings
) # TODO @nouamane: compute based on free memory, because in rope we can surpass max_position_embeddings
def forward(
self,
hidden_states, # [seq_length, batch_size, hidden_size]
sequence_mask, # [batch_size, seq_length]
):
qkv_states = self.qkv_proj(
hidden_states
) # [seq_length, batch_size, n_local_q_heads * d_qk + 2 * n_local_kv_heads * d_qk]
q_length, batch_size, _ = qkv_states.shape
if self.is_gqa:
query_states, key_states, value_states = torch.split(
qkv_states,
[
self.n_local_q_heads * self.d_qk,
self.n_local_kv_heads * self.d_qk,
self.n_local_kv_heads * self.d_qk,
],
dim=-1,
)
query_states = (
query_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_q_heads, self.d_qk)
)
key_states = (
key_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_kv_heads, self.d_qk)
)
value_states = (
value_states.transpose(0, 1).contiguous().view(batch_size, q_length, self.n_local_kv_heads, self.d_qk)
)
else:
query_states, key_states, value_states = (
qkv_states.view(q_length, batch_size, 3, self.n_local_q_heads, self.d_qk)
.permute(2, 1, 0, 3, 4)
.contiguous()
) # [3, batch_size, seq_length, n_local_q_heads, d_qk]
store = self.get_local_store()
if store is not None: # Inference case
# Double check that we use store only at inference time
assert key_states.requires_grad is False
assert value_states.requires_grad is False
if "position_offsets" in store:
old_position_offsets = store["position_offsets"]
position_ids = old_position_offsets[:, None] + sequence_mask
else:
position_ids = torch.cumsum(sequence_mask, dim=-1, dtype=torch.int32) - 1
position_offsets = position_ids[:, -1]
# Compute rotary embeddings
# Note: keep track of old rotary embedding end to check if we need to enlarge k_cache and v_cache
old_rotary_embed_end = self.rotary_embedding.end
query_states = self.rotary_embedding(query_states, position_ids=position_ids)
key_states = self.rotary_embedding(key_states, position_ids=position_ids)
if "key" not in store:
# First inference iteration (Prefill)
# TODO @nouamane: support custom masking
# assert that [ False, False, False, False, True, True, True, True, True, True] is accepted
# but [ False, False, False, False, True, True, False, False, True, True] is not (can't mask in the middle of sequence)
assert ~(
sequence_mask[:, :-1] & (~sequence_mask[:, 1:]) # True is never followed by False
).any(), "Can't mask in the middle of sequence, please make sure that pads are at the left of the sequence if existing"
# preallocate k_cache, v_cache to self.prefill_kv_len
k_cache = torch.zeros(
(
batch_size,
self.prefill_kv_len,
self.n_local_kv_heads,
self.d_qk,
),
dtype=query_states.dtype,
device=query_states.device,
)
v_cache = torch.zeros(
(batch_size, self.prefill_kv_len, self.n_local_kv_heads, self.d_v),
dtype=query_states.dtype,
device=query_states.device,
)
# Remove pad tokens from key_states and concatenate samples in key_unpad
# cu_seqlens_k is the cumulative sequence lengths of key_states
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(
query_states,
sequence_mask,
)
(key_unpad, indices_k, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(
key_states, sequence_mask
)
(value_unpad, _, _, _) = bert_padding.unpad_input(value_states, sequence_mask)
output_unpad = flash_attn_varlen_func(
q=query_unpad, # (total_q, n_local_q_heads, d_qk)
k=key_unpad, # (total_kv, n_local_kv_heads, d_qk)
v=value_unpad, # (total_kv, n_local_kv_heads, d_v)
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_q,
max_seqlen_k=max_seqlen_k,
dropout_p=0.0,
softmax_scale=None,
causal=True, # True in prefill phase, False in subsequent phases
return_attn_probs=False,
) # (total_unpadded, n_local_q_heads, d_v)
attention_output = bert_padding.pad_input(
output_unpad, indices_q, batch_size, q_length
) # (batch_size, q_length, n_local_q_heads, d_v)
pad_to_right(key_states, sequence_mask, new_tensor=k_cache)
pad_to_right(value_states, sequence_mask, new_tensor=v_cache)
else:
# Pull pre-computed key/value states
# Subsequent inference iterations (q_length=1)
k_cache = store["key"]
v_cache = store["value"]
# NOTE(fmom): According to flash_attn_with_kvcache, "If you pass in k / v, you must make sure that the cache is large enough to hold the new values"
# Since rotary embedding has changed (to enable larger context), we need to enlarge k_cache and v_cache
if self.rotary_embedding.end > old_rotary_embed_end:
k_cache = torch.cat(
[
k_cache,
torch.zeros(
(
batch_size,
self.rotary_embedding.end - old_rotary_embed_end,
self.n_local_kv_heads,
self.d_qk,
),
dtype=query_states.dtype,
device=query_states.device,
),
],
dim=1,
)
v_cache = torch.cat(
[
v_cache,
torch.zeros(
(
batch_size,
self.rotary_embedding.end - old_rotary_embed_end,
self.n_local_kv_heads,
self.d_v,
),
dtype=query_states.dtype,
device=query_states.device,
),
],
dim=1,
)
assert (
k_cache.shape[1] == self.rotary_embedding.end
), f"Cache size {k_cache.shape[1]} is smaller than rotary embedding end {self.rotary_embedding.end}"
assert (
v_cache.shape[1] == self.rotary_embedding.end
), f"Cache size {v_cache.shape[1]} is smaller than rotary embedding end {self.rotary_embedding.end}"
# [batch_size, seq_length, num_heads, d_qk]
query_states = query_states.view(
batch_size, q_length, self.n_local_q_heads, self.d_qk
) # [batch_size, q_length, self.n_heads, d_qk]
kv_length = key_states.shape[1]
key_states = key_states.view(
batch_size, kv_length, self.n_local_kv_heads, self.d_qk
) # [batch_size, kv_length, self.n_heads, d_qk]
value_states = value_states.view(
batch_size, kv_length, self.n_local_kv_heads, self.d_v
) # [batch_size, kv_length, self.n_heads, d_v]
attention_output = flash_attn_with_kvcache(
query_states,
k_cache,
v_cache,
key_states,
value_states,
rotary_cos=None,
rotary_sin=None,
# TODO @nouamane: seems like this doesnt help to indicate padding in (for first iteration it's just 0)
cache_seqlens=position_offsets.contiguous(),
softmax_scale=None,
causal=True,
rotary_interleaved=False, # GPT-NeoX style
)
store.update(
{
"key": k_cache, # flash-attn has updated with new key_states using cache_seqlens
"value": v_cache,
"position_offsets": position_offsets,
}
)
else: # Training case
# Apply rotary embeddings to query/key states
# NOTE: The layout is different from models/MiniCPM.py which is [batch_size, num_heads, seq_length, d_qk]
# Here it is, [batch_size, seq_length, num_heads, d_qk]
# [2, batch_size, seq_length, num_heads, d_qk]
key_value_states = torch.cat([key_states.unsqueeze(0), value_states.unsqueeze(0)], dim=0)
# [batch_size, seq_length, 2, num_heads, d_qk]
key_value_states = key_value_states.permute(1, 2, 0, 3, 4).contiguous()
query_states, key_value_states = self.flash_rotary_embedding(query_states, kv=key_value_states)
# [batch_size, seq_length, num_heads, d_qk]
key_states, value_states = torch.split(key_value_states, 1, dim=2)
q_sequence_mask = sequence_mask
kv_sequence_mask = sequence_mask
kv_length = key_states.shape[1]
# [batch_size, seq_length, num_heads, d_qk]
# Shaping for use in `flash-attn` version of flash-attn: `flash_attn_unpadded_func`
query_states = query_states.view(
batch_size * q_length, self.n_local_q_heads, self.d_qk
) # [batch_size * q_length, self.n_heads, d_qk]
key_states = key_states.view(
batch_size * kv_length, self.n_local_kv_heads, self.d_qk
) # [batch_size * kv_length, self.n_heads, d_qk]
value_states = value_states.view(
batch_size * kv_length, self.n_local_kv_heads, self.d_v
) # [batch_size * kv_length, self.n_heads, d_v]
attention_output = self.attention(
query_states=query_states,
key_states=key_states,
value_states=value_states,
q_sequence_mask=q_sequence_mask,
kv_sequence_mask=kv_sequence_mask,
)
attention_output = (
attention_output.contiguous().view(batch_size, q_length, self.n_local_q_heads * self.d_v).transpose(0, 1)
)
output = self.o_proj(attention_output)
return {"hidden_states": output, "sequence_mask": sequence_mask}
class MiniCPMDecoderLayer(nn.Module):
def __init__(
self,
config: MiniCPMConfig,
parallel_config: Optional[ParallelismArgs],
tp_pg: dist.ProcessGroup,
layer_idx: int,
):
super().__init__()
self.scale_depth = config.scale_depth
self.num_hidden_layers = config.num_hidden_layers
self.input_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attn = CausalSelfAttention(
config=config,
parallel_config=parallel_config,
tp_pg=tp_pg,
layer_idx=layer_idx,
)
self.post_attention_layernorm = TritonRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = MLP(config=config, parallel_config=parallel_config, tp_pg=tp_pg)
def forward(
self,
hidden_states: Union[torch.Tensor, TensorPointer],
sequence_mask: Union[torch.Tensor, TensorPointer],
) -> Dict[str, Union[torch.Tensor, TensorPointer]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
hidden_states = output["hidden_states"]
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
return {
"hidden_states": hidden_states,
"sequence_mask": output["sequence_mask"],
}
class Embedding(nn.Module, AttachableStore):
def __init__(self, tp_pg: dist.ProcessGroup, config: MiniCPMConfig, parallel_config: Optional[ParallelismArgs]):
super().__init__()
self.token_embedding = TensorParallelEmbedding(
num_embeddings=config.vocab_size,
embedding_dim=config.hidden_size,
padding_idx=config.pad_token_id,
pg=tp_pg,
mode=parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE,
)
self.pg = tp_pg
def forward(self, input_ids: torch.Tensor, input_mask: torch.Tensor): # [batch_size, seq_length]
store = self.get_local_store()
if store is not None:
if "past_length" in store:
past_length = store["past_length"]
else:
past_length = torch.zeros(1, dtype=torch.long, device=input_ids.device).expand(input_ids.shape[0])
cumsum_mask = input_mask.cumsum(-1, dtype=torch.long)
# Store new past_length in store
store["past_length"] = past_length + cumsum_mask[:, -1]
# Format input in `[seq_length, batch_size]` to support high TP with low batch_size
input_ids = input_ids.transpose(0, 1)
input_embeds = self.token_embedding(input_ids)
return {"input_embeds": input_embeds}
class MiniCPMModel(nn.Module):
"""Build pipeline graph"""
def __init__(
self,
config: MiniCPMConfig,
parallel_context: ParallelContext,
parallel_config: Optional[ParallelismArgs],
):
super().__init__()
# Declare all the nodes
self.p2p = P2P(parallel_context.pp_pg, device=torch.device("cuda"))
self.config = config
self.parallel_config = parallel_config
self.parallel_context = parallel_context
self.tp_mode = parallel_config.tp_mode if parallel_config is not None else TensorParallelLinearMode.ALL_REDUCE
tp_linear_async_communication = (
parallel_config.tp_linear_async_communication if parallel_config is not None else False
)
self.token_position_embeddings = PipelineBlock(
p2p=self.p2p,
module_builder=Embedding,
module_kwargs={
"tp_pg": parallel_context.tp_pg,
"config": config,
"parallel_config": parallel_config,
},
module_input_keys={"input_ids", "input_mask"},
module_output_keys={"input_embeds"},
)
self.decoder = nn.ModuleList(
[
PipelineBlock(
p2p=self.p2p,
module_builder=MiniCPMDecoderLayer,
module_kwargs={
"config": config,
"parallel_config": parallel_config,
"tp_pg": parallel_context.tp_pg,
"layer_idx": layer_idx,
},
module_input_keys={"hidden_states", "sequence_mask"},
module_output_keys={"hidden_states", "sequence_mask"},
)
for layer_idx in range(config.num_hidden_layers)
]
)
self.final_layer_norm = PipelineBlock(
p2p=self.p2p,
module_builder=TritonRMSNorm,
module_kwargs={"hidden_size": config.hidden_size, "eps": config.rms_norm_eps},
module_input_keys={"input"},
module_output_keys={"hidden_states"},
) # TODO
self.lm_head = PipelineBlock(
p2p=self.p2p,
# Understand that this means that we return sharded logits that are going to need to be gathered
module_builder=TensorParallelColumnLinear,
module_kwargs={
"in_features": config.hidden_size,
"out_features": config.vocab_size,
"pg": parallel_context.tp_pg,
"bias": False,
# TODO @thomasw21: refactor so that we store that default in a single place.
"mode": self.tp_mode,
"async_communication": tp_linear_async_communication,
},
module_input_keys={"x"},
module_output_keys={"logits"},
)
self.cast_to_fp32 = PipelineBlock(
p2p=self.p2p,
module_builder=lambda: lambda x: x.float(),
module_kwargs={},
module_input_keys={"x"},
module_output_keys={"output"},
)
def forward(
self,
input_ids: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
input_mask: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
):
return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
def forward_with_hidden_states(
self,
input_ids: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
input_mask: Union[torch.Tensor, TensorPointer], # [batch_size, seq_length]
):
# all tensors are optional as most ranks don't need anything from the dataloader.
output = self.token_position_embeddings(input_ids=input_ids, input_mask=input_mask)
hidden_encoder_states = {
"hidden_states": output["input_embeds"] * self.config.scale_emb,
"sequence_mask": input_mask,
}
for encoder_block in self.decoder:
hidden_encoder_states = encoder_block(**hidden_encoder_states)
hidden_states = self.final_layer_norm(input=hidden_encoder_states["hidden_states"])["hidden_states"]
sharded_logits = self.lm_head(x=hidden_states / (self.config.hidden_size / self.config.dim_model_base))["logits"]
fp32_sharded_logits = self.cast_to_fp32(x=sharded_logits)["output"]
return fp32_sharded_logits, hidden_states
def get_block_compute_costs(self):
"""Computes the compute cost of each block in the model so that we can do a better job of load balancing."""
model_config = self.config
d_ff = model_config.intermediate_size
d_qkv = model_config.hidden_size // model_config.num_attention_heads
block_compute_costs = {
# CausalSelfAttention (qkv proj + attn out) + MLP
MiniCPMDecoderLayer: 4 * model_config.num_attention_heads * d_qkv * model_config.hidden_size
+ 3 * d_ff * model_config.hidden_size,
# This is the last lm_head
TensorParallelColumnLinear: model_config.vocab_size * model_config.hidden_size,
}
return block_compute_costs
def get_flops_per_sec(self, iteration_time_in_sec, sequence_length, global_batch_size):
"""Get flops per second for a given model"""
world_size = self.parallel_context.world_pg.size()
try:
num_key_values_heads = self.config.num_key_value_heads
except AttributeError:
num_key_values_heads = self.config.num_attention_heads
model_flops, hardware_flops = get_flops(
num_layers=self.config.num_hidden_layers,
hidden_size=self.config.hidden_size,
num_heads=self.config.num_attention_heads,
num_key_value_heads=num_key_values_heads,
vocab_size=self.config.vocab_size,
ffn_hidden_size=self.config.intermediate_size,
seq_len=sequence_length,
batch_size=global_batch_size,
recompute_granularity=self.parallel_config.recompute_granularity,
)
model_flops_per_s = model_flops / (iteration_time_in_sec * world_size * 1e12)
hardware_flops_per_s = hardware_flops / (iteration_time_in_sec * world_size * 1e12)
return model_flops_per_s, hardware_flops_per_s
@torch.jit.script
def masked_mean(loss, label_mask, dtype):
# type: (Tensor, Tensor, torch.dtype) -> Tensor
return (loss * label_mask).sum(dtype=dtype) / label_mask.sum()
class Loss(nn.Module):
def __init__(self, tp_pg: dist.ProcessGroup):
super().__init__()
self.tp_pg = tp_pg
def forward(
self,
sharded_logits: torch.Tensor, # [seq_length, batch_size, logits]
label_ids: torch.Tensor, # [batch_size, seq_length]
label_mask: torch.Tensor, # [batch_size, seq_length]
) -> Dict[str, torch.Tensor]:
# Megatron by defaults cast everything in fp32. `--f16-lm-cross-entropy` is an option you can use to keep current precision.
# https://github.com/NVIDIA/Megatron-LM/blob/f267e6186eae1d6e2055b412b00e2e545a8e896a/megatron/model/gpt_model.py#L38
loss = sharded_cross_entropy(
sharded_logits, label_ids.transpose(0, 1).contiguous(), group=self.tp_pg, dtype=torch.float
).transpose(0, 1)
# TODO @thomasw21: It's unclear what kind of normalization we want to do.
loss = masked_mean(loss, label_mask, dtype=torch.float)
# I think indexing causes a sync we don't actually want
# loss = loss[label_mask].sum()
return {"loss": loss}
class MiniCPMForTraining(NanotronModel):
def __init__(
self,
config: MiniCPMConfig,
parallel_context: ParallelContext,
parallel_config: Optional[ParallelismArgs],
random_states: Optional[RandomStates] = None,
):
super().__init__()
import warnings
self.model = MiniCPMModel(config=config, parallel_context=parallel_context, parallel_config=parallel_config)
self.loss = PipelineBlock(
p2p=self.model.p2p,
module_builder=Loss,
module_kwargs={"tp_pg": parallel_context.tp_pg},
module_input_keys={
"sharded_logits",
"label_ids",
"label_mask",
},
module_output_keys={"loss"},
)
self.parallel_context = parallel_context
self.config = config
self.parallel_config = parallel_config
def forward(
self,
input_ids: Union[torch.Tensor, TensorPointer],
input_mask: Union[torch.Tensor, TensorPointer],
label_ids: Union[torch.Tensor, TensorPointer],
label_mask: Union[torch.Tensor, TensorPointer],
) -> Dict[str, Union[torch.Tensor, TensorPointer]]:
sharded_logits = self.model(
input_ids=input_ids,
input_mask=input_mask,
)
loss = self.loss(
sharded_logits=sharded_logits,
label_ids=label_ids,
label_mask=label_mask,
)["loss"]
return {"loss": loss}
@torch.no_grad()
def init_model_randomly(self, init_method, scaled_init_method):
"""Initialize model parameters randomly.
Args:
init_method (callable): Used for embedding/position/qkv weight in attention/first layer weight of mlp/ /lm_head/
scaled_init_method (callable): Used for o weight in attention/second layer weight of mlp/
Note:
Layernorm weight all 0 or 1 depending on `apply_layernorm_1p`
"""
model = self
initialized_parameters = set()
# Handle tensor parallelism
module_id_to_prefix = {id(module): f"{module_name}." for module_name, module in model.named_modules()}
# Fix the root_model
module_id_to_prefix[id(model)] = ""
for module_name, module in model.named_modules():
if isinstance(module, TensorParallelColumnLinear):
# Somehow Megatron-LM does something super complicated, https://github.com/NVIDIA/Megatron-LM/blob/2360d732a399dd818d40cbe32828f65b260dee11/megatron/core/tensor_parallel/layers.py#L96
# What it does:
# - instantiate a buffer of the `full size` in fp32
# - run init method on it
# - shard result to get only a specific shard
# Instead I'm lazy and just going to run init_method, since they are scalar independent
assert {"weight"} == {name for name, _ in module.named_parameters()} or {"weight"} == {
name for name, _ in module.named_parameters()
}
for param_name, param in module.named_parameters():
assert isinstance(param, NanotronParameter)
if param.is_tied:
tied_info = param.get_tied_info()
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
module_id_to_prefix=module_id_to_prefix
)
else:
full_param_name = f"{module_name}.{param_name}"
if full_param_name in initialized_parameters:
# Already initialized
continue
if "weight" == param_name:
init_method(param)
elif "bias" == param_name:
param.zero_()
else:
raise ValueError(f"Who the fuck is {param_name}?")
assert full_param_name not in initialized_parameters
initialized_parameters.add(full_param_name)
elif isinstance(module, TensorParallelRowLinear):
# Somehow Megatron-LM does something super complicated, https://github.com/NVIDIA/Megatron-LM/blob/2360d732a399dd818d40cbe32828f65b260dee11/megatron/core/tensor_parallel/layers.py#L96
# What it does:
# - instantiate a buffer of the `full size` in fp32
# - run init method on it
# - shard result to get only a specific shard
# Instead I'm lazy and just going to run init_method, since they are scalar independent
assert {"weight"} == {name for name, _ in module.named_parameters()} or {"weight"} == {
name for name, _ in module.named_parameters()
}
for param_name, param in module.named_parameters():
assert isinstance(param, NanotronParameter)
if param.is_tied:
tied_info = param.get_tied_info()
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
module_id_to_prefix=module_id_to_prefix
)
else:
full_param_name = f"{module_name}.{param_name}"
if full_param_name in initialized_parameters:
# Already initialized
continue
if "weight" == param_name:
scaled_init_method(param)
elif "bias" == param_name:
param.zero_()
else:
raise ValueError(f"Who the fuck is {param_name}?")
assert full_param_name not in initialized_parameters
initialized_parameters.add(full_param_name)
elif isinstance(module, TritonRMSNorm):
assert {"weight"} == {name for name, _ in module.named_parameters()}
for param_name, param in module.named_parameters():
assert isinstance(param, NanotronParameter)
if param.is_tied:
tied_info = param.get_tied_info()
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
module_id_to_prefix=module_id_to_prefix
)
else:
full_param_name = f"{module_name}.{param_name}"
if full_param_name in initialized_parameters:
# Already initialized
continue
if "weight" == param_name:
# TODO @thomasw21: Sometimes we actually want 0
param.fill_(1)
elif "bias" == param_name:
param.zero_()
else:
raise ValueError(f"Who the fuck is {param_name}?")
assert full_param_name not in initialized_parameters
initialized_parameters.add(full_param_name)
elif isinstance(module, TensorParallelEmbedding):
# TODO @thomasw21: Handle tied embeddings
# Somehow Megatron-LM does something super complicated, https://github.com/NVIDIA/Megatron-LM/blob/2360d732a399dd818d40cbe32828f65b260dee11/megatron/core/tensor_parallel/layers.py#L96
# What it does:
# - instantiate a buffer of the `full size` in fp32
# - run init method on it
# - shard result to get only a specific shard
# Instead I'm lazy and just going to run init_method, since they are scalar independent
assert {"weight"} == {name for name, _ in module.named_parameters()}
assert isinstance(module.weight, NanotronParameter)
if module.weight.is_tied:
tied_info = module.weight.get_tied_info()
full_param_name = tied_info.get_full_name_from_module_id_to_prefix(
module_id_to_prefix=module_id_to_prefix
)
else:
full_param_name = f"{module_name}.weight"
if full_param_name in initialized_parameters:
# Already initialized
continue
init_method(module.weight)
assert full_param_name not in initialized_parameters
initialized_parameters.add(full_param_name)
assert initialized_parameters == {
param.get_tied_info().get_full_name_from_module_id_to_prefix(module_id_to_prefix=module_id_to_prefix)
if param.is_tied
else name
for name, param in model.named_parameters()
}, f"Somehow the initialized set of parameters don't match:\n - Expected: { {name for name, _ in model.named_parameters()} }\n - Got: {initialized_parameters}"
def get_block_compute_costs(self):
"""Computes the compute cost of each block in the model so that we can do a better job of load balancing."""
return self.model.get_block_compute_costs()
def get_flops_per_sec(self, iteration_time_in_sec, sequence_length, global_batch_size):
"""Get flops per second for a given model"""
return self.model.get_flops_per_sec(iteration_time_in_sec, sequence_length, global_batch_size)
def get_flops(
num_layers,
hidden_size,
num_heads,
vocab_size,
seq_len,
kv_channels=None,
ffn_hidden_size=None,
batch_size=1,
recompute_granularity=None,
glu_activation=False,
):
"""Counts flops in an decoder-only model
Args:
num_layers: number of decoder layers
hidden_size: hidden size of the model
num_heads: number of heads in the model
num_key_value_heads: number of key/value heads in the model
ffn_hidden_size: hidden size of the FFN
vocab_size: size of the vocabulary
seq_len: sequence length of the decoder
batch_size: batch size
recompute_granularity: Activation recomputation method. Either None, FULL or SELECTIVE. Check Megatron-LM docs for more info.
Returns:
model_flops: flops in the model (should be independent of the hardware and model implementation)
hardware_flops: flops in the hardware (actual flops performed on the hardware). Check 6.3 in https://arxiv.org/pdf/2205.05198.pdf
"""
if kv_channels is None:
assert hidden_size % num_heads == 0
kv_channels = hidden_size // num_heads
if ffn_hidden_size is None:
ffn_hidden_size = 4 * hidden_size
# In the following we mark the reduced dimension with parentheses
# decoder
# self attention (MQA)
## q projection
decoder_q_proj_flops_fwd = 2 * num_layers * batch_size * seq_len * (hidden_size) * num_heads * kv_channels
## kv projection, shared across heads
decoder_kv_proj_flops_fwd = 2 * num_layers * batch_size * seq_len * (hidden_size) * 2 * kv_channels
## qk logits
decoder_qk_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (kv_channels) * seq_len
### SWA (sliding window attention / local attention)
# window_size = 4096
# decoder_qk_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (kv_channels) * window_size
## v logits
decoder_v_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (seq_len) * kv_channels
# decoder_v_logits_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (window_size) * kv_channels
## attn out
decoder_attn_out_flops_fwd = 2 * num_layers * batch_size * num_heads * seq_len * (kv_channels) * hidden_size
# FF
## 1st layer
decoder_ffn_1_flops_fwd = 2 * num_layers * batch_size * seq_len * (hidden_size) * ffn_hidden_size
if glu_activation:
# 3 matmuls instead of 2 in FFN
# ref. https://arxiv.org/pdf/2002.05202.pdf
# Used for example in T5 v1.1
decoder_ffn_1_flops_fwd = 4 * num_layers * batch_size * seq_len * (hidden_size) * ffn_hidden_size
## 2nd layer
decoder_ffn_2_flops_fwd = 2 * num_layers * batch_size * seq_len * (ffn_hidden_size) * hidden_size
decoder_flops_fwd = (
decoder_q_proj_flops_fwd
+ decoder_kv_proj_flops_fwd
+ decoder_qk_logits_flops_fwd
+ decoder_v_logits_flops_fwd
+ decoder_attn_out_flops_fwd
+ decoder_ffn_1_flops_fwd
+ decoder_ffn_2_flops_fwd
)
# lm head
lm_head_flops_fwd = 2 * batch_size * seq_len * (hidden_size) * vocab_size
# the bwd pass requires double the flops in case of matmuls to calculate the gradients with respect to
# both input and weight tensors
model_flops = 3 * (decoder_flops_fwd + lm_head_flops_fwd) # 1 for fwd + 2 for bwd
if recompute_granularity is None:
hardware_flops = model_flops
elif recompute_granularity is RecomputeGranularity.FULL:
# Note: we don't recompute lm head activs
hardware_flops = model_flops + decoder_flops_fwd # + activ recomputation
elif recompute_granularity is RecomputeGranularity.SELECTIVE:
# all terms with s^2 are flops that are recomputed
# ref. appendix A: https://arxiv.org/pdf/2205.05198.pdf
recomputed_decoder_flops = decoder_qk_logits_flops_fwd + decoder_v_logits_flops_fwd
hardware_flops = model_flops + recomputed_decoder_flops
else:
raise ValueError("recompute_granularity must be one of 'full' or 'selective'")
return model_flops, hardware_flops
|