File size: 9,732 Bytes
54ba632 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# ruff: noqa: E402
"""
This module converts a transformers LlamaForCausalLM to a brrr model
Command:
torchrun --nproc_per_node=1 convert_trfrs_to_brrr.py \
--model_name openbmb/MiniCPM-2B-dpo-bf16 \
--save_path ./pretrained/MiniCPM-2B-dpo-bf16
"""
import argparse
import sys
from dataclasses import asdict
from pathlib import Path
from typing import Dict, List
import torch
from brrr.trainer import DistributedTrainer
sys.path.append(Path(__file__).parent.parent.as_posix())
import os
from nanotron.parallel.parameters import NanotronParameter, sanity_check
from nanotron.parallel.pipeline_parallel.engine import (
AllForwardAllBackwardPipelineEngine,
)
from nanotron.parallel.tensor_parallel.nn import TensorParallelLinearMode
from transformers import MistralConfig as MistralConfig_trfs, MistralForCausalLM
import nanotron.distributed as dist
from nanotron.config import ParallelismArgs, RecomputeGranularity
from nanotron.parallel.context import ParallelContext
from nanotron.models import build_model
from nanotron.trainer import mark_tied_parameters
from nanotron.serialize import save_meta, save_weights, save
from modeling_minicpm import MiniCPMForTraining
from config_minicpm import PARALLELISM as PARALLELISM_BRRR, CONFIG as CONFIG_BRRR
def get_args():
parser = argparse.ArgumentParser(description="Convert transformers weights to brrr weights")
parser.add_argument("--model_name", type=str, default="openbmb/MiniCPM-2B-dpo-bf16")
parser.add_argument("--save_path", type=str, default="pretrained/MiniCPM-2B-dpo-bf16")
parser.add_argument("--dp", type=int, default=1)
parser.add_argument("--pp", type=int, default=1)
parser.add_argument("--tp", type=int, default=1)
return parser.parse_args()
def permute_for_rotary(tensor, num_heads, per_head_hidden_size, hidden_size):
return (
tensor.view(num_heads, 2, per_head_hidden_size // 2, hidden_size)
.transpose(1, 2)
.contiguous()
.view(num_heads * per_head_hidden_size, hidden_size)
)
def get_transformers_weight(
name: str, ref_module_state_dict: Dict[str, torch.Tensor], ref_module: MistralForCausalLM, get_grad: bool = False
) -> torch.Tensor:
"""From our brrr implementation, we get the equivalent tensor in transformers implementation"""
config = ref_module.config
brrr_prefix = "model."
assert name.startswith(brrr_prefix)
name = name[len(brrr_prefix) :]
path = name.split(".")
path.remove("pp_block")
name = ".".join(path)
if get_grad is False:
def get_tensor(path: str):
return ref_module_state_dict[path]
def get_tensors(path: List[str]):
return [get_tensor(p) for p in path]
else:
def get_tensor(path: str):
weight = ref_module.get_parameter(path)
return weight.grad
def get_tensors(path: List[str]):
return [get_tensor(p) for p in path]
if name == "token_position_embeddings.token_embedding.weight":
return get_tensor("model.embed_tokens.weight")
elif name == "lm_head.weight":
# This only used when weights are not shared
return get_tensor("lm_head.weight")
elif name == "final_layer_norm.weight":
return get_tensor("model.norm.weight")
if path[0] == "decoder":
transformer_path = ["model"] + ["layers"] + [path[1]]
if path[2] == "attn":
path[2] = "self_attn"
if path[2] == "ff":
path[2] = "mlp"
if path[3] == "qkv_proj":
proj_names = ["q_proj", "k_proj", "v_proj"]
tensor_list = get_tensors(
[".".join(transformer_path + path[2:3] + [proj_name] + path[4:]) for proj_name in proj_names]
)
# Permute q/k
per_head_hidden_size = config.hidden_size // config.num_attention_heads
# Permute q
print(f"Permuting q {tensor_list[0].shape}")
tensor_list[0] = permute_for_rotary(
tensor=tensor_list[0],
num_heads=config.num_attention_heads,
per_head_hidden_size=per_head_hidden_size,
hidden_size=config.hidden_size,
)
# Permute k
print(f"Permuting k {tensor_list[1].shape}")
tensor_list[1] = permute_for_rotary(
tensor=tensor_list[1],
num_heads=config.num_key_value_heads,
per_head_hidden_size=per_head_hidden_size,
hidden_size=config.hidden_size,
)
return torch.cat(tensor_list, dim=0)
if path[3] == "gate_up_proj":
tensor_list = get_tensors(
[
".".join(transformer_path + path[2:3] + [proj_name] + path[4:])
for proj_name in ["gate_proj", "up_proj"]
]
)
return torch.cat(tensor_list, dim=0)
return get_tensor(".".join(transformer_path + path[2:]))
else:
raise ValueError(f"Couldn't find transformer equivalent of {name}")
def convert_trfrs_to_brrr(dp, pp, tp, model_name="huggyllama/llama-7b", save_path="pretrained/llama-7b"):
# check save_path doesnt exist or is empty
save_path = Path(save_path)
# assert not save_path.exists() or len(list(save_path.iterdir())) == 0, f"save_path {save_path} is not empty"
parallel_config = PARALLELISM_BRRR
parallel_config.dp = dp
parallel_config.pp = pp
parallel_config.tp = tp
# Initialise all process groups
parallel_context = ParallelContext(
data_parallel_size=parallel_config.dp,
pipeline_parallel_size=parallel_config.pp,
tensor_parallel_size=parallel_config.tp,
)
# params
dtype = torch.bfloat16 # Flash attention doesn't support fp32
# Initialise brrr model
model_config_brrr = CONFIG_BRRR.model.model_config
model = build_model(
model_builder=lambda: MiniCPMForTraining(
config=model_config_brrr,
parallel_context=parallel_context,
parallel_config=parallel_config,
random_states=None,
),
dtype=dtype,
parallel_context=parallel_context,
device=torch.device("cpu"),
)
# Initialise transformers model
device_map = {}
current_pp_rank = dist.get_rank(group=parallel_context.pp_pg)
device_map["model.embed_tokens"] = (
model.model.token_position_embeddings.rank
if current_pp_rank == model.model.token_position_embeddings.rank
else "meta"
)
for i in range(model_config_brrr.num_hidden_layers):
device_map[f"model.layers.{i}"] = (
model.model.decoder[i].rank if current_pp_rank == model.model.decoder[i].rank else "meta"
)
device_map["model.norm"] = (
model.model.final_layer_norm.rank if current_pp_rank == model.model.final_layer_norm.rank else "meta"
)
device_map["lm_head"] = model.model.lm_head.rank if current_pp_rank == model.model.lm_head.rank else "meta"
model_ref = MistralForCausalLM.from_pretrained(model_name, torch_dtype=dtype, device_map=device_map)
# Copy weights from trfrs to brrr
ref_state_dict = model_ref.state_dict()
for name, param in model.named_parameters():
print(f"Syncing {name}")
ref_param = get_transformers_weight(name=name, ref_module_state_dict=ref_state_dict, ref_module=model_ref)
param_is_tp_sharded = (
isinstance(param, NanotronParameter)
and param.is_sharded
and parallel_context.world_ranks_to_pg[param.get_sharded_info().global_ranks] == parallel_context.tp_pg
)
if param_is_tp_sharded:
sharded_info = param.get_sharded_info()
# copy param data (not just the reference)
with torch.no_grad():
for local_global_slices_pair in sharded_info.local_global_slices_pairs:
local_slices = local_global_slices_pair.local_slices
global_slices = local_global_slices_pair.global_slices
param[local_slices].copy_(ref_param[global_slices])
else:
assert (
ref_param.shape == param.shape
), f"Parameter shape don't match for {name}\n{ref_param.shape} != {param.shape}"
# copy param data (not just the reference)
with torch.no_grad():
param.copy_(ref_param)
ref_param = None
# torch.cuda.empty_cache()
# TODO @nouamanetazi: assert weights are the same
# Marks parameters as NanotronParameters
mark_tied_parameters(model=model, parallel_context=parallel_context, parallel_config=parallel_config)
sanity_check(root_module=model)
checkpoint_metadata = {
"last_train_step": 0,
"consumed_train_samples": 0,
}
save(config=CONFIG_BRRR, model=model, optimizer=None, lr_scheduler=None, parallel_context=parallel_context, root_folder=save_path,
should_save_optimizer=False, should_save_lr_scheduler=False, checkpoint_metadata=checkpoint_metadata,
sanity_checks=False)
# save_weights(model=model, parallel_context=parallel_context, root_folder=save_path)
# save_meta(root_folder=save_path, parallel_context=parallel_context, checkpoint_metadata=checkpoint_metadata)
if dist.get_rank(parallel_context.world_pg) == 0:
print(save_path)
import json
with open(save_path / "model_config.json", mode="w") as fo:
fo.write(json.dumps(asdict(CONFIG_BRRR.model.model_config), indent=4))
def main():
args = get_args()
convert_trfrs_to_brrr(**vars(args))
if __name__ == "__main__":
main()
|