|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch LLaMA model.""" |
|
import time |
|
import math |
|
import warnings |
|
from typing import List, Optional, Tuple, Union, Mapping |
|
from contextlib import nullcontext |
|
from dataclasses import dataclass |
|
from collections import defaultdict |
|
from tqdm import tqdm |
|
from accelerate import Accelerator |
|
|
|
import os |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache |
|
from transformers.modeling_attn_mask_utils import ( |
|
AttentionMaskConverter, |
|
_prepare_4d_attention_mask, |
|
_prepare_4d_causal_attention_mask, |
|
_prepare_4d_causal_attention_mask_for_sdpa, |
|
) |
|
from transformers.modeling_outputs import BaseModelOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from transformers.integrations import is_deepspeed_zero3_enabled |
|
from transformers.utils.import_utils import is_torch_fx_available |
|
|
|
|
|
|
|
if is_torch_fx_available(): |
|
if not is_torch_greater_or_equal_than_1_13: |
|
import torch.fx |
|
|
|
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) |
|
|
|
from .configuration_llama import LlamaConfig |
|
from .modeling_ultragist import Memory |
|
from .modeling_utils import optional_grad_ctx, compute_loss, ModelOutput |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "LlamaConfig" |
|
|
|
|
|
class LlamaRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
LlamaRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm) |
|
|
|
|
|
class LlamaRotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding): |
|
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding): |
|
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.outer(t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`): |
|
The position indices of the tokens corresponding to the query and key tensors. For example, this can be |
|
used to pass offsetted position ids when working with a KV-cache. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
cos = cos[position_ids].unsqueeze(unsqueeze_dim) |
|
sin = sin[position_ids].unsqueeze(unsqueeze_dim) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
def apply_rotary_pos_emb_single(x, cos, sin, position_ids): |
|
|
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
x_embed = (x * cos) + (rotate_half(x) * sin) |
|
return x_embed |
|
|
|
|
|
class LlamaMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
if "mlp" in config.ultragist_param: |
|
self.ultragist_up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
self.ultragist_up_proj.weight.data.zero_() |
|
self.ultragist_up_proj._is_hf_initialized = True |
|
|
|
self.ultragist_down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
self.ultragist_down_proj.weight.data.zero_() |
|
self.ultragist_down_proj._is_hf_initialized = True |
|
|
|
def _init_ultragist_proj(self, missing_keys): |
|
"""Initialize the ultragist projection weight with that of the ordinal projection.""" |
|
if "mlp" in self.config.ultragist_param: |
|
if is_deepspeed_zero3_enabled(): |
|
import deepspeed |
|
params = [self.up_proj.weight, self.down_proj.weight, self.ultragist_up_proj.weight, self.ultragist_down_proj.weight] |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
if (self.ultragist_up_proj.weight.sum(-1) == 0).any(): |
|
self.ultragist_up_proj.weight.data[:] = self.up_proj.weight.data |
|
self.ultragist_down_proj.weight.data[:] = self.down_proj.weight.data |
|
else: |
|
if any("ultragist_up_proj" in missing_key for missing_key in missing_keys): |
|
|
|
self.ultragist_up_proj.weight.data[:] = self.up_proj.weight.data |
|
self.ultragist_down_proj.weight.data[:] = self.down_proj.weight.data |
|
|
|
def forward(self, x, ultragist_size): |
|
if self.config.pretraining_tp > 1: |
|
|
|
raise NotImplementedError |
|
|
|
slice = self.intermediate_size // self.config.pretraining_tp |
|
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) |
|
up_proj_slices = self.up_proj.weight.split(slice, dim=0) |
|
down_proj_slices = self.down_proj.weight.split(slice, dim=1) |
|
|
|
gate_proj = torch.cat( |
|
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 |
|
) |
|
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) |
|
|
|
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) |
|
down_proj = [ |
|
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) |
|
] |
|
down_proj = sum(down_proj) |
|
|
|
else: |
|
if "mlp" in self.config.ultragist_param: |
|
if ultragist_size > 0: |
|
ordinal_hidden_states = x[:, :-ultragist_size] |
|
ultragist_hidden_states = x[:, -ultragist_size:] |
|
|
|
ordinal_down_proj = self.down_proj(self.act_fn(self.gate_proj(ordinal_hidden_states)) * self.up_proj(ordinal_hidden_states)) |
|
ultragist_down_proj = self.ultragist_down_proj(self.act_fn(self.gate_proj(ultragist_hidden_states)) * self.ultragist_up_proj(ultragist_hidden_states)) |
|
down_proj = torch.cat([ordinal_down_proj, ultragist_down_proj], dim=1) |
|
else: |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
else: |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
|
return down_proj |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
class LlamaAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None): |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " |
|
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.attention_dropout = config.attention_dropout |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
self.is_causal = True |
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) |
|
self._init_rope() |
|
|
|
|
|
|
|
if "q" in config.ultragist_param: |
|
self.ultragist_q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
|
|
self.ultragist_q_proj.weight.data.zero_() |
|
self.ultragist_q_proj._is_hf_initialized = True |
|
if "k" in config.ultragist_param: |
|
self.ultragist_k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.ultragist_k_proj.weight.data.zero_() |
|
self.ultragist_k_proj._is_hf_initialized = True |
|
if "v" in config.ultragist_param: |
|
self.ultragist_v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) |
|
self.ultragist_v_proj.weight.data.zero_() |
|
self.ultragist_v_proj._is_hf_initialized = True |
|
if "o" in config.ultragist_param: |
|
self.ultragist_o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) |
|
self.ultragist_o_proj.weight.data.zero_() |
|
self.ultragist_o_proj._is_hf_initialized = True |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = LlamaRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = LlamaLinearScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
scaling_factor=scaling_factor, |
|
base=self.rope_theta, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def _init_ultragist_proj(self, missing_keys): |
|
"""Initialize the ultragist projection weight with that of the ordinal projection.""" |
|
ultragist_param = self.config.ultragist_param |
|
|
|
if is_deepspeed_zero3_enabled(): |
|
import deepspeed |
|
if "q" in ultragist_param: |
|
with deepspeed.zero.GatheredParameters([self.ultragist_q_proj.weight, self.q_proj.weight], modifier_rank=0): |
|
|
|
if (self.ultragist_q_proj.weight.sum(-1) == 0).any(): |
|
self.ultragist_q_proj.weight.data[:] = self.q_proj.weight.data |
|
if "k" in ultragist_param: |
|
with deepspeed.zero.GatheredParameters([self.ultragist_k_proj.weight, self.k_proj.weight], modifier_rank=0): |
|
if (self.ultragist_k_proj.weight.sum(-1) == 0).any(): |
|
self.ultragist_k_proj.weight.data[:] = self.k_proj.weight.data |
|
if "v" in ultragist_param: |
|
with deepspeed.zero.GatheredParameters([self.ultragist_v_proj.weight, self.v_proj.weight], modifier_rank=0): |
|
if (self.ultragist_v_proj.weight.sum(-1) == 0).any(): |
|
self.ultragist_v_proj.weight.data[:] = self.v_proj.weight.data |
|
if "o" in ultragist_param: |
|
with deepspeed.zero.GatheredParameters([self.ultragist_o_proj.weight, self.o_proj.weight], modifier_rank=0): |
|
if (self.ultragist_o_proj.weight.sum(-1) == 0).any(): |
|
self.ultragist_o_proj.weight.data[:] = self.o_proj.weight.data |
|
else: |
|
|
|
if "q" in ultragist_param and any("ultragist_q_proj" in missing_key for missing_key in missing_keys): |
|
if (self.ultragist_q_proj.weight == 0).all(): |
|
self.ultragist_q_proj.weight.data[:] = self.q_proj.weight.data |
|
if "k" in ultragist_param and any("ultragist_k_proj" in missing_key for missing_key in missing_keys): |
|
if (self.ultragist_k_proj.weight == 0).all(): |
|
self.ultragist_k_proj.weight.data[:] = self.k_proj.weight.data |
|
if "v" in ultragist_param and any("ultragist_v_proj" in missing_key for missing_key in missing_keys): |
|
if (self.ultragist_v_proj.weight == 0).all(): |
|
self.ultragist_v_proj.weight.data[:] = self.v_proj.weight.data |
|
if "o" in ultragist_param and any("ultragist_o_proj" in missing_key for missing_key in missing_keys): |
|
if (self.ultragist_o_proj.weight == 0).all(): |
|
self.ultragist_o_proj.weight.data[:] = self.o_proj.weight.data |
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def qkv_proj_with_ultragist(self, hidden_states, ultragist_size=0): |
|
if ultragist_size > 0: |
|
ordinal_hidden_states = hidden_states[:, :-ultragist_size] |
|
ultragist_hidden_states = hidden_states[:, -ultragist_size:] |
|
|
|
if "q" in self.config.ultragist_param: |
|
ordinal_query_states = self.q_proj(ordinal_hidden_states) |
|
ultragist_query_states = self.ultragist_q_proj(ultragist_hidden_states) |
|
query_states = torch.cat([ordinal_query_states, ultragist_query_states], dim=1) |
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
|
|
if "k" in self.config.ultragist_param: |
|
ordinal_key_states = self.k_proj(ordinal_hidden_states) |
|
ultragist_key_states = self.ultragist_k_proj(ultragist_hidden_states) |
|
key_states = torch.cat([ordinal_key_states, ultragist_key_states], dim=1) |
|
else: |
|
key_states = self.k_proj(hidden_states) |
|
|
|
if "v" in self.config.ultragist_param: |
|
ordinal_value_states = self.v_proj(ordinal_hidden_states) |
|
ultragist_value_states = self.ultragist_v_proj(ultragist_hidden_states) |
|
value_states = torch.cat([ordinal_value_states, ultragist_value_states], dim=1) |
|
else: |
|
value_states = self.v_proj(hidden_states) |
|
|
|
else: |
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
return query_states, key_states, value_states |
|
|
|
def o_proj_with_ultragist(self, attn_output, ultragist_size=0): |
|
if ultragist_size > 0: |
|
if "o" in self.config.ultragist_param: |
|
ordinal_attn_output = self.o_proj(attn_output[:, :-ultragist_size]) |
|
ultragist_attn_output = self.ultragist_o_proj(attn_output[:, -ultragist_size:]) |
|
attn_output = torch.cat([ordinal_attn_output, ultragist_attn_output], dim=1) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
else: |
|
attn_output = self.o_proj(attn_output) |
|
return attn_output |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_value |
|
|
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_ultragist(hidden_states, total_ultragist_size) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
|
|
|
|
if window_size > 0: |
|
past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
|
|
if window_size == 0: |
|
past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) |
|
|
|
key_position_ids = position_ids |
|
|
|
query_position_ids = key_position_ids[:, -q_len:] |
|
|
|
key_states = apply_rotary_pos_emb_single(key_states, cos, sin, key_position_ids) |
|
query_states = apply_rotary_pos_emb_single(query_states, cos, sin, query_position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" |
|
f" {attn_weights.size()}" |
|
) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
attn_weights = attn_weights + attention_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
|
|
attn_output = self.o_proj_with_ultragist(attn_output, total_ultragist_size) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class LlamaSdpaAttention(LlamaAttention): |
|
""" |
|
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from |
|
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to |
|
SDPA API. |
|
""" |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if output_attentions: |
|
|
|
logger.warning_once( |
|
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " |
|
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
bsz, q_len, _ = hidden_states.size() |
|
kv_seq_len = hidden_states.shape[-2] |
|
past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_value |
|
if past_key is not None: |
|
past_seq_len = past_key.shape[2] |
|
kv_seq_len += past_seq_len |
|
else: |
|
past_seq_len = 0 |
|
|
|
query_states, key_states, value_states = self.qkv_proj_with_ultragist(hidden_states, total_ultragist_size) |
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
|
|
|
|
|
|
if window_size > 0: |
|
past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) |
|
|
|
if past_key is not None: |
|
|
|
key_states = torch.cat([past_key, key_states], dim=2) |
|
value_states = torch.cat([past_value, value_states], dim=2) |
|
|
|
|
|
if window_size == 0: |
|
past_key_value = (key_states, value_states, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size) |
|
|
|
key_position_ids = position_ids |
|
|
|
query_position_ids = key_position_ids[:, -q_len:] |
|
|
|
key_states = apply_rotary_pos_emb_single(key_states, cos, sin, key_position_ids) |
|
query_states = apply_rotary_pos_emb_single(query_states, cos, sin, query_position_ids) |
|
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups) |
|
value_states = repeat_kv(value_states, self.num_key_value_groups) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): |
|
raise ValueError( |
|
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if query_states.device.type == "cuda" and attention_mask is not None: |
|
query_states = query_states.contiguous() |
|
key_states = key_states.contiguous() |
|
value_states = value_states.contiguous() |
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=attention_mask, |
|
dropout_p=self.attention_dropout if self.training else 0.0, |
|
|
|
is_causal=self.is_causal and attention_mask is None and q_len > 1, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) |
|
attn_output = self.o_proj_with_ultragist(attn_output, total_ultragist_size) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
LLAMA_ATTENTION_CLASSES = { |
|
"eager": LlamaAttention, |
|
"sdpa": LlamaSdpaAttention, |
|
} |
|
|
|
|
|
class LlamaDecoderLayer(nn.Module): |
|
def __init__(self, config: LlamaConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
|
|
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) |
|
|
|
self.mlp = LlamaMLP(config) |
|
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, |
|
query_sequence_length, key_sequence_length)` if default attention is used. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
if "padding_mask" in kwargs: |
|
warnings.warn( |
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" |
|
) |
|
|
|
|
|
past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_value |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
**kwargs, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states, total_ultragist_size) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
LLAMA_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`LlamaConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAMA_START_DOCSTRING, |
|
) |
|
class LlamaPreTrainedModel(PreTrainedModel): |
|
config_class = LlamaConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["LlamaDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
LLAMA_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` |
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. |
|
|
|
Two formats are allowed: |
|
- a [`~cache_utils.Cache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of |
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy |
|
cache format. |
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the |
|
legacy cache format will be returned. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't |
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` |
|
of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.", |
|
LLAMA_START_DOCSTRING, |
|
) |
|
class LlamaModel(LlamaPreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] |
|
|
|
Args: |
|
config: LlamaConfig |
|
""" |
|
|
|
def __init__(self, config: LlamaConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
|
|
|
|
self.ultragist_embed_tokens = nn.Embedding(1, config.hidden_size, self.padding_idx) |
|
self.ultragist_embed_tokens._is_hf_initialized = True |
|
|
|
self.layers = nn.ModuleList( |
|
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] |
|
) |
|
self._use_sdpa = config._attn_implementation == "sdpa" |
|
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def _init_ultragist_embed(self, missing_keys): |
|
"""Initialize the ultragist token embedding with that of the eos token.""" |
|
if is_deepspeed_zero3_enabled(): |
|
import deepspeed |
|
params = [self.ultragist_embed_tokens.weight, self.embed_tokens.weight] |
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0): |
|
|
|
if (self.ultragist_embed_tokens.weight == 0).all(): |
|
if self.config.ultragist_embed_init == "bos": |
|
self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] |
|
elif self.config.ultragist_embed_init == "eos": |
|
self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.eos_token_id] |
|
else: |
|
raise NotImplementedError(f"Make sure ultragist_embed_init is either eos or bos, found {self.config.ultragist_embed_init}") |
|
else: |
|
if any("ultragist_embed_tokens" in missing_key for missing_key in missing_keys): |
|
if self.config.ultragist_embed_init == "bos": |
|
self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.bos_token_id] |
|
elif self.config.ultragist_embed_init == "eos": |
|
self.ultragist_embed_tokens.weight.data[:] = self.embed_tokens.weight.data[self.config.eos_token_id] |
|
else: |
|
raise NotImplementedError(f"Make sure ultragist_embed_init is either eos or bos, found {self.config.ultragist_embed_init}") |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
use_cache = True |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape[:2] |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length = inputs_embeds.shape[:2] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
past_key, past_value, ultragist_sizes, total_ultragist_size, raw_size_to_cache, window_size = past_key_values[0] |
|
|
|
if past_key is not None: |
|
past_key_values_length = past_key.shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
|
|
if total_ultragist_size > 0: |
|
ordinal_input_ids = input_ids[:, :-total_ultragist_size] |
|
ultragist_input_ids = input_ids[:, -total_ultragist_size:] |
|
ordinal_inputs_embeds = self.embed_tokens(ordinal_input_ids) |
|
|
|
ultragist_input_embeds = self.ultragist_embed_tokens(ultragist_input_ids - self.config.vocab_size) |
|
inputs_embeds = torch.cat([ordinal_inputs_embeds, ultragist_input_embeds], dim=1) |
|
else: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if self._use_sdpa and not output_attentions and total_ultragist_size == 0: |
|
|
|
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( |
|
attention_mask, |
|
(batch_size, seq_length), |
|
inputs_embeds, |
|
past_key_values_length, |
|
) |
|
else: |
|
|
|
attention_mask = _prepare_4d_causal_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
position_ids = torch.arange(seq_length_with_past, dtype=torch.long, device=device).repeat(batch_size, 1) |
|
|
|
|
|
|
|
if total_ultragist_size > 0: |
|
|
|
condensing_size = window_size - raw_size_to_cache |
|
|
|
window_size_with_ultragist = window_size + total_ultragist_size |
|
|
|
memory_size = seq_length_with_past - window_size_with_ultragist |
|
min_value = torch.finfo(inputs_embeds.dtype).min |
|
|
|
ultragist_start_idx = -total_ultragist_size |
|
|
|
|
|
reference_attention_mask = attention_mask[..., -total_ultragist_size - 1, -window_size_with_ultragist: -total_ultragist_size] |
|
|
|
for ultragist_size in ultragist_sizes: |
|
|
|
if ultragist_size < 0: |
|
continue |
|
|
|
token_per_ultragist = condensing_size // ultragist_size |
|
|
|
|
|
ultragist_end_idx = ultragist_start_idx + ultragist_size |
|
if ultragist_end_idx == 0: |
|
ultragist_end_idx = torch.iinfo(torch.long).max |
|
|
|
if self.config.ultragist_attn == "step-expansion": |
|
|
|
|
|
|
|
ultragist_arange = torch.arange(1, ultragist_size + 1, device=device) * token_per_ultragist |
|
|
|
ordinal_arange = torch.arange(window_size, device=device) |
|
|
|
valid_pos = ordinal_arange.expand(ultragist_size, window_size) < ultragist_arange.unsqueeze(-1) |
|
|
|
ordinal_attention_mask = torch.where(valid_pos, 0, min_value) |
|
|
|
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) |
|
|
|
if self.config.ultragist_attend_prev: |
|
ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).triu(1) |
|
|
|
ultragist_position_ids = torch.arange(token_per_ultragist, token_per_ultragist * ultragist_size + 1, token_per_ultragist) + memory_size |
|
ultragist_position_ids = ultragist_position_ids + torch.arange(ultragist_size) |
|
position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids |
|
else: |
|
ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).fill_diagonal_(0) |
|
|
|
ultragist_position_ids = torch.arange(token_per_ultragist, token_per_ultragist * ultragist_size + 1, token_per_ultragist) + memory_size |
|
position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids |
|
|
|
attention_mask[..., ultragist_start_idx: ultragist_end_idx, -window_size_with_ultragist: -total_ultragist_size] = ordinal_attention_mask |
|
attention_mask[..., ultragist_start_idx: ultragist_end_idx, ultragist_start_idx: ultragist_end_idx] = ultragist_attention_mask |
|
|
|
attention_mask[..., ultragist_start_idx: ultragist_end_idx, -total_ultragist_size: ultragist_start_idx] = min_value |
|
|
|
elif self.config.ultragist_attn == "segmentation": |
|
|
|
|
|
|
|
indices = torch.arange(token_per_ultragist * ultragist_size, device=device).view(ultragist_size, -1) |
|
|
|
ordinal_attention_mask = attention_mask.new_full((ultragist_size, window_size), min_value) |
|
ordinal_attention_mask.scatter_(dim=-1, index=indices, value=0) |
|
|
|
|
|
ordinal_attention_mask = ordinal_attention_mask[None, None, ...] + reference_attention_mask.unsqueeze(-2) |
|
|
|
if self.config.ultragist_attend_prev: |
|
ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).triu(1) |
|
|
|
ultragist_position_ids = position_ids.new_full(ultragist_size, fill_value=token_per_ultragist + memory_size) |
|
ultragist_position_ids = ultragist_position_ids + torch.arange(ultragist_size) |
|
position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids |
|
else: |
|
ultragist_attention_mask = attention_mask.new_full((ultragist_size, ultragist_size), min_value).fill_diagonal_(0) |
|
|
|
ultragist_position_ids = position_ids.new_full(ultragist_size, fill_value=token_per_ultragist + memory_size) |
|
position_ids[:, ultragist_start_idx: ultragist_end_idx] = ultragist_position_ids |
|
|
|
attention_mask[..., ultragist_start_idx: ultragist_end_idx, -window_size_with_ultragist: -total_ultragist_size] = ordinal_attention_mask |
|
attention_mask[..., ultragist_start_idx: ultragist_end_idx, ultragist_start_idx: ultragist_end_idx] = ultragist_attention_mask |
|
|
|
attention_mask[..., ultragist_start_idx: ultragist_end_idx, -total_ultragist_size: ultragist_start_idx] = min_value |
|
|
|
elif self.config.ultragist_attn == "full-coverage": |
|
pass |
|
|
|
else: |
|
raise NotImplementedError |
|
|
|
ultragist_start_idx = ultragist_end_idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
|
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_value, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class LlamaForCausalLM(LlamaPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = LlamaModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
"""Override the default from_pretrained to extend vocab size according to ultragist_size.""" |
|
kwargs.update(output_loading_info=True) |
|
model, loading_info = super().from_pretrained(*args, **kwargs) |
|
|
|
|
|
config = model.config |
|
model.memory = Memory( |
|
model_config=config, |
|
k_seq_dim=2, |
|
v_seq_dim=2, |
|
) |
|
|
|
missing_keys = loading_info["missing_keys"] |
|
|
|
|
|
model.model._init_ultragist_embed(missing_keys) |
|
|
|
for layer in model.model.layers: |
|
layer.self_attn._init_ultragist_proj(missing_keys) |
|
layer.mlp._init_ultragist_proj(missing_keys) |
|
|
|
return model |
|
|
|
def _native_forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
shift_labels: Optional[bool] = True, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, ModelOutput]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if past_key_values is None: |
|
|
|
past_key_values = [(None, None, [0], 0, 0, 0) for _ in range(self.config.num_hidden_layers)] |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
if self.config.pretraining_tp > 1: |
|
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) |
|
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] |
|
logits = torch.cat(logits, dim=-1) |
|
else: |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
batch_loss = None |
|
valid_token_num = None |
|
|
|
if labels is not None: |
|
loss, batch_loss, valid_token_num = compute_loss(logits, labels, shift=shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return ModelOutput( |
|
loss=loss, |
|
batch_loss=batch_loss, |
|
valid_token_num=valid_token_num, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def _ultragist_forward(self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
|
|
|
|
self.memory.prepare( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
labels=labels |
|
) |
|
|
|
|
|
|
|
|
|
while not self.memory.finish: |
|
|
|
|
|
|
|
input_ids, attention_mask, past_key_values, labels = self.memory.step() |
|
|
|
|
|
if self.training and self.memory._step_idx == 1: |
|
labels[:] = -100 |
|
|
|
|
|
outputs = self._native_forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
labels=labels, |
|
|
|
shift_labels=False, |
|
) |
|
|
|
|
|
|
|
self.memory.update_memory(outputs.past_key_values) |
|
|
|
|
|
|
|
if labels is not None: |
|
|
|
self.memory.update_loss(outputs.batch_loss, outputs.valid_token_num) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
outputs = self.memory.output(outputs) |
|
|
|
|
|
|
|
|
|
return outputs |
|
|
|
def forward(self, **kwargs): |
|
"""Forward computation over a batch of sequences. |
|
""" |
|
|
|
with optional_grad_ctx(with_grad=self.training): |
|
|
|
if hasattr(self, "_enable_ultragist") and self._enable_ultragist == False: |
|
return self._native_forward(**kwargs) |
|
else: |
|
return self._ultragist_forward(**kwargs) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), |
|
) |
|
return reordered_past |
|
|