namdp-ptit commited on
Commit
d0fa1c4
1 Parent(s): ee6bccb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -12
README.md CHANGED
@@ -1,22 +1,22 @@
1
  ---
2
  language:
3
- - vi
4
  license: apache-2.0
5
  library_name: transformers
6
  tags:
7
- - transformers
8
- - cross-encoder
9
- - rerank
10
  datasets:
11
- - unicamp-dl/mmarco
12
  pipeline_tag: text-classification
13
  widget:
14
- - text: tỉnh nào có diện tích lớn nhất việt nam
15
- output:
16
- - label: nghệ an có diện tích lớn nhất việt nam
17
- score: 0.99999
18
- - label: bắc ninh có diện tích nhỏ nhất việt nam
19
- score: 0.0001
20
  ---
21
 
22
  # Reranker
@@ -27,6 +27,8 @@ widget:
27
  * [Fine tune](#fine-tune)
28
  * [Data format](#data-format)
29
  * [Performance](#performance)
 
 
30
  * [Citation](#citation)
31
 
32
  Different from embedding model, reranker uses question and document as input and directly output similarity instead of
@@ -116,7 +118,8 @@ Train data should be a json file, where each line is a dict like this:
116
  `query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts. If you have no negative
117
  texts for a query, you can random sample some from the entire corpus as the negatives.
118
 
119
- Besides, for each query in the train data, we used LLMs to generate hard negative for them by asking LLMs to create a document that is the opposite one of the documents in 'pos'.
 
120
 
121
  ## Performance
122
 
@@ -131,6 +134,28 @@ the [MS MMarco Passage Reranking - Vi - Dev](https://huggingface.co/datasets/uni
131
  | [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | 0.6087 | 0.5841 | 0.6513 | 0.6062 | 0.6872 | 0.62091 | 3.51
132
  | [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | 0.6088 | 0.5908 | 0.6446 | 0.6108 | 0.6785 | 0.6249 | 1.29
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  ## Citation
135
 
136
  Please cite as
 
1
  ---
2
  language:
3
+ - vi
4
  license: apache-2.0
5
  library_name: transformers
6
  tags:
7
+ - transformers
8
+ - cross-encoder
9
+ - rerank
10
  datasets:
11
+ - unicamp-dl/mmarco
12
  pipeline_tag: text-classification
13
  widget:
14
+ - text: tỉnh nào có diện tích lớn nhất việt nam
15
+ output:
16
+ - label: nghệ an có diện tích lớn nhất việt nam
17
+ score: 0.99999
18
+ - label: bắc ninh có diện tích nhỏ nhất việt nam
19
+ score: 0.0001
20
  ---
21
 
22
  # Reranker
 
27
  * [Fine tune](#fine-tune)
28
  * [Data format](#data-format)
29
  * [Performance](#performance)
30
+ * [Contact](#contact)
31
+ * [Support The Project](#support-the-project)
32
  * [Citation](#citation)
33
 
34
  Different from embedding model, reranker uses question and document as input and directly output similarity instead of
 
118
  `query` is the query, and `pos` is a list of positive texts, `neg` is a list of negative texts. If you have no negative
119
  texts for a query, you can random sample some from the entire corpus as the negatives.
120
 
121
+ Besides, for each query in the train data, we used LLMs to generate hard negative for them by asking LLMs to create a
122
+ document that is the opposite one of the documents in 'pos'.
123
 
124
  ## Performance
125
 
 
134
  | [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) | 0.6087 | 0.5841 | 0.6513 | 0.6062 | 0.6872 | 0.62091 | 3.51
135
  | [BAAI/bge-reranker-v2-gemma](https://huggingface.co/BAAI/bge-reranker-v2-gemma) | 0.6088 | 0.5908 | 0.6446 | 0.6108 | 0.6785 | 0.6249 | 1.29
136
 
137
+ ## Contact
138
+
139
140
+
141
+ LinkedIn: [Dang Phuong Nam](https://www.linkedin.com/in/dang-phuong-nam-157912288/)
142
+
143
+ Facebook: [Phương Nam](https://www.facebook.com/phuong.namdang.7146557)
144
+
145
+ ## Support The Project
146
+
147
+ If you find this project helpful and wish to support its ongoing development, here are some ways you can contribute:
148
+
149
+ 1. **Star the Repository**: Show your appreciation by starring the repository. Your support motivates further
150
+ development
151
+ and enhancements.
152
+ 2. **Contribute**: We welcome your contributions! You can help by reporting bugs, submitting pull requests, or
153
+ suggesting new features.
154
+ 3. **Donate**: If you’d like to support financially, consider making a donation. You can donate through:
155
+ - Vietcombank: 9912692172 - DANG PHUONG NAM
156
+
157
+ Thank you for your support!
158
+
159
  ## Citation
160
 
161
  Please cite as