File size: 7,303 Bytes
3a4c9de
cee588a
 
 
 
 
 
3a4c9de
7593825
cee588a
3a4c9de
 
cee588a
 
3a4c9de
cee588a
3a4c9de
cee588a
 
3a4c9de
 
 
cee588a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a4c9de
7593825
3a4c9de
 
281f4d8
3a4c9de
 
 
 
 
 
 
 
 
 
 
 
 
 
752d2cf
 
ec8f1db
5b87189
3a4c9de
 
 
5b87189
 
 
 
 
 
 
 
 
 
 
 
3a4c9de
0f9a443
5b87189
0f9a443
 
3a4c9de
 
 
3d973c3
3a4c9de
0977899
 
 
 
 
339aad6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee588a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- transformers
datasets:
- mwitiderrick/AlpacaCode
base_model: openlm-research/open_llama_3b
inference: true
model_type: llama
prompt_template: '### Instruction:\n

  {prompt}

  ### Response:

  '
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
- name: mwitiderrick/open_llama_3b_instruct_v_0.2
  results:
  - task:
      type: text-generation
    dataset:
      name: hellaswag
      type: hellaswag
    metrics:
    - type: hellaswag (0-Shot)
      value: 0.6581
      name: hellaswag(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: winogrande
      type: winogrande
    metrics:
    - type: winogrande (0-Shot)
      value: 0.6267
      name: winogrande(0-Shot)
  - task:
      type: text-generation
    dataset:
      name: arc_challenge
      type: arc_challenge
    metrics:
    - type: arc_challenge (0-Shot)
      value: 0.3712
      name: arc_challenge(0-Shot)
    source:
      url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2
      name: open_llama_3b_instruct_v_0.2 model card
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 41.21
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 66.96
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 27.82
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 35.01
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 65.43
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 1.9
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_code_instruct_0.1
      name: Open LLM Leaderboard
---
# OpenLLaMA Code Instruct: An Open Reproduction of LLaMA

This is an [OpenLlama model](https://huggingface.co/openlm-research/open_llama_3b) that has been fine-tuned on 1 epoch of the
[AlpacaCode](https://huggingface.co/datasets/mwitiderrick/AlpacaCode) dataset (122K rows).

## Prompt Template
```
### Instruction:

{query}

### Response:
<Leave new line for model to respond> 
```
## Usage 
```python
from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
query = "Write a quick sort algorithm in Python"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
write a quick sort algorithm in Python
### Response:
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[len(arr) // 2]
        left = [x for x in arr if x < pivot]
        middle = [x for x in arr if x == pivot]
        right = [x for x in arr if x > pivot]
        return quick_sort(left) + middle + quick_sort(right)

arr = [5,2,4,3,1]
print(quick_sort(arr))
"""
[1, 2, 3, 4, 5]
"""
```
## Metrics
[Detailed metrics](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__open_llama_3b_code_instruct_0.1)
```
|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml   |none  |     0|acc   |0.6267|±  |0.0136|
|hellaswag|Yaml   |none  |     0|acc     |0.4962|±  |0.0050|
|         |       |none  |     0|acc_norm|0.6581|±  |0.0047|
|arc_challenge|Yaml   |none  |     0|acc     |0.3481|±  |0.0139|
|             |       |none  |     0|acc_norm|0.3712|±  |0.0141|
|truthfulqa|N/A    |none  |     0|bleu_max   | 24.2580|±  |0.5985|
|          |       |none  |     0|bleu_acc   |  0.2876|±  |0.0003|
|          |       |none  |     0|bleu_diff  | -8.3685|±  |0.6065|
|          |       |none  |     0|rouge1_max | 49.3907|±  |0.7350|
|          |       |none  |     0|rouge1_acc |  0.2558|±  |0.0002|
|          |       |none  |     0|rouge1_diff|-10.6617|±  |0.6450|
|          |       |none  |     0|rouge2_max | 32.4189|±  |0.9587|
|          |       |none  |     0|rouge2_acc |  0.2142|±  |0.0002|
|          |       |none  |     0|rouge2_diff|-12.9903|±  |0.9539|
|          |       |none  |     0|rougeL_max | 46.2337|±  |0.7493|
|          |       |none  |     0|rougeL_acc |  0.2424|±  |0.0002|
|          |       |none  |     0|rougeL_diff|-11.0285|±  |0.6576|
|          |       |none  |     0|acc        |  0.3072|±  |0.0405|
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_mwitiderrick__open_llama_3b_code_instruct_0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |39.72|
|AI2 Reasoning Challenge (25-Shot)|41.21|
|HellaSwag (10-Shot)              |66.96|
|MMLU (5-Shot)                    |27.82|
|TruthfulQA (0-shot)              |35.01|
|Winogrande (5-shot)              |65.43|
|GSM8k (5-shot)                   | 1.90|