Abror Shopulatov commited on
Commit
3291ce3
1 Parent(s): e4d2617

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -35
README.md CHANGED
@@ -1,39 +1,37 @@
1
  ---
2
- language:
3
- - uz
4
- tags:
5
- - transformers
6
- - uzroberta
7
- - uzbek
8
- - latin
9
  license: apache-2.0
10
- widget:
11
- - text: Menga yoqdi, juda yaxshi ekan.
12
  metrics:
13
- - precision
14
- - recall
15
- - f1
16
  - accuracy
 
17
  model-index:
18
  - name: uzroberta-sentiment-analysis
19
  results: []
20
  ---
21
 
22
- # uzroberta-sentiment-analysis
 
23
 
24
- This is a roBERTa-base model trained on ~23K reviews (more than 323K words) and finetuned for sentiment analysis of customer reviews. This model is built as part of author's project at the Uz-NLP 2022 Hackathon and it is suitable for Uzbek language.
25
 
26
- <b>Labels</b>: LABEL_0 -> Negative; LABEL_1 -> Positive
 
 
 
 
27
 
28
  ## Model description
29
 
30
- This model is a fine-tuned version of [rifkat/uztext-3Gb-BPE-Roberta](https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta) on the [Uzbek App reviews for Sentiment Classification](https://github.com/SanatbekMatlatipov/uzbek-sentiment-analysis) dataset. It achieves the following results on the evaluation set:
31
- - Loss: 0.5718
32
- - Precision: 0.9113
33
- - Recall: 0.8869
34
- - F1 Score: 0.8989
35
- - Accuracy: 0.896
 
36
 
 
37
 
38
  ## Training procedure
39
 
@@ -42,27 +40,27 @@ This model is a fine-tuned version of [rifkat/uztext-3Gb-BPE-Roberta](https://hu
42
  The following hyperparameters were used during training:
43
  - learning_rate: 2e-05
44
  - train_batch_size: 16
45
- - eval_batch_size: 32
46
  - seed: 42
47
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
- - lr_scheduler_type: cosine
49
- - lr_scheduler_warmup_ratio: 0.1
50
- - num_epochs: 4
51
- - mixed_precision_training: Native AMP
52
 
53
  ### Training results
54
 
55
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
- | 0.1595 | 1.0 | 1125 | 0.4438 | 0.8971 | 0.8523 | 0.8741 | 0.872 |
58
- | 0.1891 | 2.0 | 2250 | 0.4157 | 0.8961 | 0.9012 | 0.8987 | 0.894 |
59
- | 0.1201 | 3.0 | 3375 | 0.5024 | 0.9074 | 0.8830 | 0.8950 | 0.892 |
60
- | 0.0772 | 4.0 | 4500 | 0.5718 | 0.9113 | 0.8869 | 0.8989 | 0.896 |
 
 
61
 
62
 
63
  ### Framework versions
64
 
65
- - Transformers 4.20.1
66
- - Pytorch 1.12.0+cu116
67
- - Datasets 2.3.2
68
  - Tokenizers 0.12.1
 
1
  ---
 
 
 
 
 
 
 
2
  license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
  metrics:
 
 
 
6
  - accuracy
7
+ - f1
8
  model-index:
9
  - name: uzroberta-sentiment-analysis
10
  results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # uzroberta-sentiment-analysis
17
 
18
+ This model is a fine-tuned version of [rifkat/uztext-3Gb-BPE-Roberta](https://huggingface.co/rifkat/uztext-3Gb-BPE-Roberta) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0473
21
+ - Accuracy: 0.8257
22
+ - F1: 0.8287
23
 
24
  ## Model description
25
 
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
40
  The following hyperparameters were used during training:
41
  - learning_rate: 2e-05
42
  - train_batch_size: 16
43
+ - eval_batch_size: 16
44
  - seed: 42
45
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 6
 
 
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
+ | 0.3411 | 1.0 | 1156 | 0.4061 | 0.8276 | 0.8303 |
54
+ | 0.2319 | 2.0 | 2312 | 0.4074 | 0.8336 | 0.8359 |
55
+ | 0.1629 | 3.0 | 3468 | 0.5250 | 0.8394 | 0.8416 |
56
+ | 0.1082 | 4.0 | 4624 | 0.8780 | 0.8180 | 0.8219 |
57
+ | 0.0712 | 5.0 | 5780 | 0.9741 | 0.8321 | 0.8349 |
58
+ | 0.0537 | 6.0 | 6936 | 1.0473 | 0.8257 | 0.8287 |
59
 
60
 
61
  ### Framework versions
62
 
63
+ - Transformers 4.27.3
64
+ - Pytorch 2.0.0+cu117
65
+ - Datasets 2.11.0
66
  - Tokenizers 0.12.1