ZhiyuanChen commited on
Commit
ea9b1d8
1 Parent(s): bef6795

Upload folder using huggingface_hub

Browse files
Files changed (7) hide show
  1. README.md +301 -0
  2. config.json +58 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
  5. special_tokens_map.json +12 -0
  6. tokenizer_config.json +68 -0
  7. vocab.txt +131 -0
README.md ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: rna
3
+ tags:
4
+ - Biology
5
+ - RNA
6
+ license: agpl-3.0
7
+ datasets:
8
+ - multimolecule/gencode
9
+ library_name: multimolecule
10
+ pipeline_tag: fill-mask
11
+ mask_token: "<mask>"
12
+ widget:
13
+ - example_title: "microRNA-21"
14
+ text: "UAGC<mask><mask><mask>UCAGACUGAUGUUGA"
15
+ output:
16
+ - label: "GAC"
17
+ score: 0.6499986052513123
18
+ - label: "GUC"
19
+ score: 0.07012350112199783
20
+ - label: "CAC"
21
+ score: 0.06567499041557312
22
+ - label: "GCC"
23
+ score: 0.06494498997926712
24
+ - label: "GGC"
25
+ score: 0.06052926927804947
26
+ ---
27
+
28
+ # 3UTRBERT
29
+
30
+ Pre-trained model on 3’ untranslated region (3’UTR) using a masked language modeling (MLM) objective.
31
+
32
+ ## Disclaimer
33
+
34
+ This is an UNOFFICIAL implementation of the [Deciphering 3’ UTR mediated gene regulation using interpretable deep representation learning](https://doi.org/10.1101/2023.09.08.556883) by Yuning Yang, Gen Li, et al.
35
+
36
+ The OFFICIAL repository of 3UTRBERT is at [yangyn533/3UTRBERT](https://github.com/yangyn533/3UTRBERT).
37
+
38
+ > [!TIP]
39
+ > The MultiMolecule team has confirmed that the provided model and checkpoints are producing the same intermediate representations as the original implementation.
40
+
41
+ **The team releasing 3UTRBERT did not write this model card for this model so this model card has been written by the MultiMolecule team.**
42
+
43
+ ## Model Details
44
+
45
+ 3UTRBERT is a [bert](https://huggingface.co/google-bert/bert-base-uncased)-style model pre-trained on a large corpus of 3’ untranslated regions (3’UTRs) in a self-supervised fashion. This means that the model was trained on the raw nucleotides of RNA sequences only, with an automatic process to generate inputs and labels from those texts. Please refer to the [Training Details](#training-details) section for more information on the training process.
46
+
47
+ ### Variations
48
+
49
+ - **[`multimolecule/utrbert-3mer`](https://huggingface.co/multimolecule/utrbert-3mer)**: The 3UTRBERT model pre-trained on 3-mer data.
50
+ - **[`multimolecule/utrbert-4mer`](https://huggingface.co/multimolecule/utrbert-4mer)**: The 3UTRBERT model pre-trained on 4-mer data.
51
+ - **[`multimolecule/utrbert-5mer`](https://huggingface.co/multimolecule/utrbert-5mer)**: The 3UTRBERT model pre-trained on 5-mer data.
52
+ - **[`multimolecule/utrbert-6mer`](https://huggingface.co/multimolecule/utrbert-6mer)**: The 3UTRBERT model pre-trained on 6-mer data.
53
+
54
+ ### Model Specification
55
+
56
+ <table>
57
+ <thead>
58
+ <tr>
59
+ <th>Variants</th>
60
+ <th>Num Layers</th>
61
+ <th>Hidden Size</th>
62
+ <th>Num Heads</th>
63
+ <th>Intermediate Size</th>
64
+ <th>Num Parameters (M)</th>
65
+ <th>FLOPs (G)</th>
66
+ <th>MACs (G)</th>
67
+ <th>Max Num Tokens</th>
68
+ </tr>
69
+ </thead>
70
+ <tbody>
71
+ <tr>
72
+ <td>UTRBERT-3mer</td>
73
+ <td rowspan="4">12</td>
74
+ <td rowspan="4">768</td>
75
+ <td rowspan="4">12</td>
76
+ <td rowspan="4">3072</td>
77
+ <td>86.14</td>
78
+ <td rowspan="4">22.36</td>
79
+ <td rowspan="4">11.17</td>
80
+ <td rowspan="4">512</td>
81
+ </tr>
82
+ <tr>
83
+ <td>UTRBERT-4mer</td>
84
+ <td>86.53</td>
85
+ </tr>
86
+ <tr>
87
+ <td>UTRBERT-5mer</td>
88
+ <td>88.45</td>
89
+ </tr>
90
+ <tr>
91
+ <td>UTRBERT-6mer</td>
92
+ <td>98.05</td>
93
+ </tr>
94
+ </tbody>
95
+ </table>
96
+
97
+ ### Links
98
+
99
+ - **Code**: [multimolecule.utrbert](https://github.com/DLS5-Omics/multimolecule/tree/master/multimolecule/models/utrbert)
100
+ - **Data**: [GENCODE](https://gencodegenes.org)
101
+ - **Paper**: [Deciphering 3’ UTR mediated gene regulation using interpretable deep representation learning](https://doi.org/10.1101/2023.09.08.556883)
102
+ - **Developed by**: Yuning Yang, Gen Li, Kuan Pang, Wuxinhao Cao, Xiangtao Li, Zhaolei Zhang
103
+ - **Model type**: [BERT](https://huggingface.co/google-bert/bert-base-uncased) - [FlashAttention](https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention)
104
+ - **Original Repository**: [https://github.com/yangyn533/3UTRBERT](https://github.com/yangyn533/3UTRBERT)
105
+
106
+ ## Usage
107
+
108
+ The model file depends on the [`multimolecule`](https://multimolecule.danling.org) library. You can install it using pip:
109
+
110
+ ```bash
111
+ pip install multimolecule
112
+ ```
113
+
114
+ ### Direct Use
115
+
116
+ **Note**: Default transformers pipeline does not support K-mer tokenization.
117
+
118
+ You can use this model directly with a pipeline for masked language modeling:
119
+
120
+ ```python
121
+ >>> import multimolecule # you must import multimolecule to register models
122
+ >>> from transformers import pipeline
123
+ >>> unmasker = pipeline('fill-mask', model='multimolecule/utrbert-3mer')
124
+ >>> unmasker("uag<mask><mask><mask>cagacugauguuga")[1]
125
+
126
+ [{'score': 0.6499986052513123,
127
+ 'token': 57,
128
+ 'token_str': 'GAC',
129
+ 'sequence': '<cls> UAG <mask> GAC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
130
+ {'score': 0.07012350112199783,
131
+ 'token': 72,
132
+ 'token_str': 'GUC',
133
+ 'sequence': '<cls> UAG <mask> GUC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
134
+ {'score': 0.06567499041557312,
135
+ 'token': 32,
136
+ 'token_str': 'CAC',
137
+ 'sequence': '<cls> UAG <mask> CAC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
138
+ {'score': 0.06494498997926712,
139
+ 'token': 62,
140
+ 'token_str': 'GCC',
141
+ 'sequence': '<cls> UAG <mask> GCC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'},
142
+ {'score': 0.06052926927804947,
143
+ 'token': 67,
144
+ 'token_str': 'GGC',
145
+ 'sequence': '<cls> UAG <mask> GGC <mask> CAG AGA GAC ACU CUG UGA GAU AUG UGU GUU UUG UGA <eos>'}]
146
+ ```
147
+
148
+ ### Downstream Use
149
+
150
+ #### Extract Features
151
+
152
+ Here is how to use this model to get the features of a given sequence in PyTorch:
153
+
154
+ ```python
155
+ from multimolecule import RnaTokenizer, UtrBertModel
156
+
157
+
158
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert-3mer')
159
+ model = UtrBertModel.from_pretrained('multimolecule/utrbert-3mer')
160
+
161
+ text = "UAGCUUAUCAGACUGAUGUUGA"
162
+ input = tokenizer(text, return_tensors='pt')
163
+
164
+ output = model(**input)
165
+ ```
166
+
167
+ #### Sequence Classification / Regression
168
+
169
+ **Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for sequence classification or regression.
170
+
171
+ Here is how to use this model as backbone to fine-tune for a sequence-level task in PyTorch:
172
+
173
+ ```python
174
+ import torch
175
+ from multimolecule import RnaTokenizer, UtrBertForSequencePrediction
176
+
177
+
178
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert-3mer')
179
+ model = UtrBertForSequencePrediction.from_pretrained('multimolecule/utrbert-3mer')
180
+
181
+ text = "UAGCUUAUCAGACUGAUGUUGA"
182
+ input = tokenizer(text, return_tensors='pt')
183
+ label = torch.tensor([1])
184
+
185
+ output = model(**input, labels=label)
186
+ ```
187
+
188
+ #### Nucleotide Classification / Regression
189
+
190
+ **Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for nucleotide classification or regression.
191
+
192
+ Here is how to use this model as backbone to fine-tune for a nucleotide-level task in PyTorch:
193
+
194
+ ```python
195
+ import torch
196
+ from multimolecule import RnaTokenizer, UtrBertForNucleotidePrediction
197
+
198
+
199
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert-3mer')
200
+ model = UtrBertForNucleotidePrediction.from_pretrained('multimolecule/utrbert-3mer')
201
+
202
+ text = "UAGCUUAUCAGACUGAUGUUGA"
203
+ input = tokenizer(text, return_tensors='pt')
204
+ label = torch.randint(2, (len(text), ))
205
+
206
+ output = model(**input, labels=label)
207
+ ```
208
+
209
+ #### Contact Classification / Regression
210
+
211
+ **Note**: This model is not fine-tuned for any specific task. You will need to fine-tune the model on a downstream task to use it for contact classification or regression.
212
+
213
+ Here is how to use this model as backbone to fine-tune for a contact-level task in PyTorch:
214
+
215
+ ```python
216
+ import torch
217
+ from multimolecule import RnaTokenizer, UtrBertForContactPrediction
218
+
219
+
220
+ tokenizer = RnaTokenizer.from_pretrained('multimolecule/utrbert')
221
+ model = UtrBertForContactPrediction.from_pretrained('multimolecule/utrbert')
222
+
223
+ text = "UAGCUUAUCAGACUGAUGUUGA"
224
+ input = tokenizer(text, return_tensors='pt')
225
+ label = torch.randint(2, (len(text), len(text)))
226
+
227
+ output = model(**input, labels=label)
228
+ ```
229
+
230
+ ## Training Details
231
+
232
+ 3UTRBERT used Masked Language Modeling (MLM) as the pre-training objective: taking a sequence, the model randomly masks 15% of the tokens in the input then runs the entire masked sentence through the model and has to predict the masked tokens. This is comparable to the Cloze task in language modeling.
233
+
234
+ ### Training Data
235
+
236
+ The 3UTRBERT model was pre-trained on human mRNA transcript sequences from [GENCODE](https://gencodegenes.org).
237
+ GENCODE aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. The GENCODE release 40 used by this work contains 61,544 genes, and 246,624 transcripts.
238
+
239
+ 3UTRBERT collected the human mRNA transcript sequences from GENCODE, including 108,573 unique mRNA transcripts. Only the longest transcript of each gene was used in the pre-training process. 3UTRBERT only used the 3’ untranslated regions (3’UTRs) of the mRNA transcripts for pre-training to avoid codon constrains in the CDS region, and to reduce increased complexity of the entire mRNA transcripts. The average length of the 3’UTRs was 1,227 nucleotides, while the median length was 631 nucleotides. Each 3’UTR sequence was cut to non-overlapping patches of 510 nucleotides. The remaining sequences were padded to the same length.
240
+
241
+ Note [`RnaTokenizer`][multimolecule.RnaTokenizer] will convert "T"s to "U"s for you, you may disable this behaviour by passing `replace_T_with_U=False`.
242
+
243
+ ### Training Procedure
244
+
245
+ #### Preprocessing
246
+
247
+ 3UTRBERT used masked language modeling (MLM) as the pre-training objective. The masking procedure is similar to the one used in BERT:
248
+
249
+ - 15% of the tokens are masked.
250
+ - In 80% of the cases, the masked tokens are replaced by `<mask>`.
251
+ - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace.
252
+ - In the 10% remaining cases, the masked tokens are left as is.
253
+
254
+ Since 3UTRBERT used k-mer tokenizer, it masks the entire k-mer instead of individual nucleotides to avoid information leakage.
255
+
256
+ For example, if the k-mer is 3, the sequence `"UAGCGUAU"` will be tokenized as `["UAG", "AGC", "GCG", "CGU", "GUA", "UAU"]`. If the nucleotide `"C"` is masked, the adjacent tokens will also be masked, resulting `["UAG", "<mask>", "<mask>", "<mask>", "GUA", "UAU"]`.
257
+
258
+ #### PreTraining
259
+
260
+ The model was trained on 4 NVIDIA Quadro RTX 6000 GPUs with 24GiB memories.
261
+
262
+ - Batch size: 128
263
+ - Learning rate: 3e-4
264
+ - Weight decay: 0.01
265
+ - Optimizer: AdamW(β1=0.9, β2=0.98, e=1e-6)
266
+ - Steps: 200,000
267
+ - Learning rate scheduler: Linear
268
+ - Learning rate warm-up: 10,000 steps
269
+
270
+ ## Citation
271
+
272
+ **BibTeX**:
273
+
274
+ ```bibtex
275
+ @article {yang2023deciphering,
276
+ author = {Yang, Yuning and Li, Gen and Pang, Kuan and Cao, Wuxinhao and Li, Xiangtao and Zhang, Zhaolei},
277
+ title = {Deciphering 3{\textquoteright} UTR mediated gene regulation using interpretable deep representation learning},
278
+ elocation-id = {2023.09.08.556883},
279
+ year = {2023},
280
+ doi = {10.1101/2023.09.08.556883},
281
+ publisher = {Cold Spring Harbor Laboratory},
282
+ abstract = {The 3{\textquoteright}untranslated regions (3{\textquoteright}UTRs) of messenger RNAs contain many important cis-regulatory elements that are under functional and evolutionary constraints. We hypothesize that these constraints are similar to grammars and syntaxes in human languages and can be modeled by advanced natural language models such as Transformers, which has been very effective in modeling protein sequence and structures. Here we describe 3UTRBERT, which implements an attention-based language model, i.e., Bidirectional Encoder Representations from Transformers (BERT). 3UTRBERT was pre-trained on aggregated 3{\textquoteright}UTR sequences of human mRNAs in a task-agnostic manner; the pre-trained model was then fine-tuned for specific downstream tasks such as predicting RBP binding sites, m6A RNA modification sites, and predicting RNA sub-cellular localizations. Benchmark results showed that 3UTRBERT generally outperformed other contemporary methods in each of these tasks. We also showed that the self-attention mechanism within 3UTRBERT allows direct visualization of the semantic relationship between sequence elements.Competing Interest StatementThe authors have declared no competing interest.},
283
+ URL = {https://www.biorxiv.org/content/early/2023/09/12/2023.09.08.556883},
284
+ eprint = {https://www.biorxiv.org/content/early/2023/09/12/2023.09.08.556883.full.pdf},
285
+ journal = {bioRxiv}
286
+ }
287
+ ```
288
+
289
+ ## Contact
290
+
291
+ Please use GitHub issues of [MultiMolecule](https://github.com/DLS5-Omics/multimolecule/issues) for any questions or comments on the model card.
292
+
293
+ Please contact the authors of the [3UTRBERT paper](https://doi.org/10.1101/2023.09.08.556883) for questions or comments on the paper/model.
294
+
295
+ ## License
296
+
297
+ This model is licensed under the [AGPL-3.0 License](https://www.gnu.org/licenses/agpl-3.0.html).
298
+
299
+ ```spdx
300
+ SPDX-License-Identifier: AGPL-3.0-or-later
301
+ ```
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "UtrBertForPreTraining"
4
+ ],
5
+ "attention_dropout": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "eos_token_ids": 0,
9
+ "head": {
10
+ "act": null,
11
+ "bias": true,
12
+ "dropout": 0.0,
13
+ "hidden_size": null,
14
+ "layer_norm_eps": 1e-12,
15
+ "num_labels": null,
16
+ "output_name": null,
17
+ "problem_type": null,
18
+ "transform": null,
19
+ "transform_act": "gelu"
20
+ },
21
+ "hidden_act": "gelu",
22
+ "hidden_dropout": 0.1,
23
+ "hidden_size": 768,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 3072,
26
+ "layer_norm_eps": 1e-12,
27
+ "lm_head": {
28
+ "act": null,
29
+ "bias": true,
30
+ "dropout": 0.0,
31
+ "hidden_size": 768,
32
+ "layer_norm_eps": 1e-12,
33
+ "output_name": null,
34
+ "transform": "nonlinear",
35
+ "transform_act": "gelu"
36
+ },
37
+ "mask_token_id": 4,
38
+ "max_position_embeddings": 512,
39
+ "model_type": "utrbert",
40
+ "nmers": 3,
41
+ "null_token_id": 5,
42
+ "num_attention_heads": 12,
43
+ "num_hidden_layers": 12,
44
+ "num_rnn_layer": 1,
45
+ "output_past": true,
46
+ "pad_token_id": 0,
47
+ "position_embedding_type": "absolute",
48
+ "rnn": "lstm",
49
+ "rnn_dropout": 0.0,
50
+ "rnn_hidden": 768,
51
+ "split": 10,
52
+ "torch_dtype": "float32",
53
+ "transformers_version": "4.44.0",
54
+ "type_vocab_size": 2,
55
+ "unk_token_id": 3,
56
+ "use_cache": true,
57
+ "vocab_size": 131
58
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98987e77c184ce309fe0b95e4baf5117d56711bbf2d1c6a78d6e053d1c4b29d8
3
+ size 346961196
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1be14d1ba608811190ef03913e53b6840171a2386bb51d7e064eed062023b54c
3
+ size 347004666
special_tokens_map.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<null>"
4
+ ],
5
+ "bos_token": "<cls>",
6
+ "cls_token": "<cls>",
7
+ "eos_token": "<eos>",
8
+ "mask_token": "<mask>",
9
+ "pad_token": "<pad>",
10
+ "sep_token": "<eos>",
11
+ "unk_token": "<unk>"
12
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<cls>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "<eos>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "<mask>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "5": {
44
+ "content": "<null>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "additional_special_tokens": [
53
+ "<null>"
54
+ ],
55
+ "bos_token": "<cls>",
56
+ "clean_up_tokenization_spaces": true,
57
+ "cls_token": "<cls>",
58
+ "codon": false,
59
+ "eos_token": "<eos>",
60
+ "mask_token": "<mask>",
61
+ "model_max_length": 510,
62
+ "nmers": 3,
63
+ "pad_token": "<pad>",
64
+ "replace_T_with_U": true,
65
+ "sep_token": "<eos>",
66
+ "tokenizer_class": "RnaTokenizer",
67
+ "unk_token": "<unk>"
68
+ }
vocab.txt ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <pad>
2
+ <cls>
3
+ <eos>
4
+ <unk>
5
+ <mask>
6
+ <null>
7
+ AAA
8
+ AAC
9
+ AAG
10
+ AAU
11
+ AAN
12
+ ACA
13
+ ACC
14
+ ACG
15
+ ACU
16
+ ACN
17
+ AGA
18
+ AGC
19
+ AGG
20
+ AGU
21
+ AGN
22
+ AUA
23
+ AUC
24
+ AUG
25
+ AUU
26
+ AUN
27
+ ANA
28
+ ANC
29
+ ANG
30
+ ANU
31
+ ANN
32
+ CAA
33
+ CAC
34
+ CAG
35
+ CAU
36
+ CAN
37
+ CCA
38
+ CCC
39
+ CCG
40
+ CCU
41
+ CCN
42
+ CGA
43
+ CGC
44
+ CGG
45
+ CGU
46
+ CGN
47
+ CUA
48
+ CUC
49
+ CUG
50
+ CUU
51
+ CUN
52
+ CNA
53
+ CNC
54
+ CNG
55
+ CNU
56
+ CNN
57
+ GAA
58
+ GAC
59
+ GAG
60
+ GAU
61
+ GAN
62
+ GCA
63
+ GCC
64
+ GCG
65
+ GCU
66
+ GCN
67
+ GGA
68
+ GGC
69
+ GGG
70
+ GGU
71
+ GGN
72
+ GUA
73
+ GUC
74
+ GUG
75
+ GUU
76
+ GUN
77
+ GNA
78
+ GNC
79
+ GNG
80
+ GNU
81
+ GNN
82
+ UAA
83
+ UAC
84
+ UAG
85
+ UAU
86
+ UAN
87
+ UCA
88
+ UCC
89
+ UCG
90
+ UCU
91
+ UCN
92
+ UGA
93
+ UGC
94
+ UGG
95
+ UGU
96
+ UGN
97
+ UUA
98
+ UUC
99
+ UUG
100
+ UUU
101
+ UUN
102
+ UNA
103
+ UNC
104
+ UNG
105
+ UNU
106
+ UNN
107
+ NAA
108
+ NAC
109
+ NAG
110
+ NAU
111
+ NAN
112
+ NCA
113
+ NCC
114
+ NCG
115
+ NCU
116
+ NCN
117
+ NGA
118
+ NGC
119
+ NGG
120
+ NGU
121
+ NGN
122
+ NUA
123
+ NUC
124
+ NUG
125
+ NUU
126
+ NUN
127
+ NNA
128
+ NNC
129
+ NNG
130
+ NNU
131
+ NNN