Commit
•
43cbf18
1
Parent(s):
994e46a
Update pipeline.py
Browse files- pipeline.py +746 -521
pipeline.py
CHANGED
@@ -1,45 +1,66 @@
|
|
1 |
-
# Implementation of
|
2 |
|
3 |
import inspect
|
4 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
5 |
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
from packaging import version
|
9 |
-
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
10 |
|
11 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
13 |
-
from diffusers.loaders import
|
|
|
|
|
|
|
|
|
|
|
14 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
15 |
-
from diffusers.models.attention_processor import
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
17 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
18 |
from diffusers.utils import (
|
19 |
USE_PEFT_BACKEND,
|
20 |
deprecate,
|
|
|
|
|
21 |
logging,
|
22 |
replace_example_docstring,
|
23 |
scale_lora_layers,
|
24 |
unscale_lora_layers,
|
25 |
)
|
26 |
from diffusers.utils.torch_utils import randn_tensor
|
27 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
28 |
-
from diffusers.pipelines.
|
29 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
30 |
|
31 |
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
|
32 |
|
33 |
-
|
34 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
35 |
|
36 |
EXAMPLE_DOC_STRING = """
|
37 |
Examples:
|
38 |
```py
|
39 |
>>> import torch
|
40 |
-
>>> from diffusers import
|
41 |
-
|
|
|
|
|
|
|
42 |
>>> pipe = pipe.to("cuda")
|
|
|
43 |
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
44 |
>>> image = pipe(prompt).images[0]
|
45 |
```
|
@@ -271,6 +292,17 @@ class PAGCFGIdentitySelfAttnProcessor:
|
|
271 |
|
272 |
return hidden_states
|
273 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
|
275 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
276 |
"""
|
@@ -296,18 +328,20 @@ def retrieve_timesteps(
|
|
296 |
"""
|
297 |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
298 |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
299 |
Args:
|
300 |
scheduler (`SchedulerMixin`):
|
301 |
The scheduler to get timesteps from.
|
302 |
num_inference_steps (`int`):
|
303 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
304 |
-
|
305 |
device (`str` or `torch.device`, *optional*):
|
306 |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
307 |
timesteps (`List[int]`, *optional*):
|
308 |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
309 |
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
310 |
must be `None`.
|
|
|
311 |
Returns:
|
312 |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
313 |
second element is the number of inference steps.
|
@@ -327,215 +361,143 @@ def retrieve_timesteps(
|
|
327 |
timesteps = scheduler.timesteps
|
328 |
return timesteps, num_inference_steps
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
|
|
333 |
):
|
334 |
r"""
|
335 |
-
Pipeline for text-to-image generation using Stable Diffusion.
|
336 |
-
|
337 |
-
|
|
|
|
|
338 |
The pipeline also inherits the following loading methods:
|
339 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
340 |
-
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
341 |
-
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
342 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
|
|
|
|
343 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
|
|
344 |
Args:
|
345 |
vae ([`AutoencoderKL`]):
|
346 |
-
Variational Auto-Encoder (VAE)
|
347 |
-
text_encoder ([
|
348 |
-
Frozen text-encoder
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
scheduler ([`SchedulerMixin`]):
|
354 |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
355 |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
|
|
362 |
"""
|
363 |
|
364 |
-
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
365 |
-
_optional_components = [
|
366 |
-
|
367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
def __init__(
|
370 |
self,
|
371 |
vae: AutoencoderKL,
|
372 |
text_encoder: CLIPTextModel,
|
|
|
373 |
tokenizer: CLIPTokenizer,
|
|
|
374 |
unet: UNet2DConditionModel,
|
375 |
scheduler: KarrasDiffusionSchedulers,
|
376 |
-
safety_checker: StableDiffusionSafetyChecker,
|
377 |
-
feature_extractor: CLIPImageProcessor,
|
378 |
image_encoder: CLIPVisionModelWithProjection = None,
|
379 |
-
|
|
|
|
|
380 |
):
|
381 |
super().__init__()
|
382 |
|
383 |
-
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
384 |
-
deprecation_message = (
|
385 |
-
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
386 |
-
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
387 |
-
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
388 |
-
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
389 |
-
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
390 |
-
" file"
|
391 |
-
)
|
392 |
-
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
393 |
-
new_config = dict(scheduler.config)
|
394 |
-
new_config["steps_offset"] = 1
|
395 |
-
scheduler._internal_dict = FrozenDict(new_config)
|
396 |
-
|
397 |
-
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
398 |
-
deprecation_message = (
|
399 |
-
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
400 |
-
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
401 |
-
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
402 |
-
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
403 |
-
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
404 |
-
)
|
405 |
-
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
406 |
-
new_config = dict(scheduler.config)
|
407 |
-
new_config["clip_sample"] = False
|
408 |
-
scheduler._internal_dict = FrozenDict(new_config)
|
409 |
-
|
410 |
-
if safety_checker is None and requires_safety_checker:
|
411 |
-
logger.warning(
|
412 |
-
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
413 |
-
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
414 |
-
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
415 |
-
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
416 |
-
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
417 |
-
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
418 |
-
)
|
419 |
-
|
420 |
-
if safety_checker is not None and feature_extractor is None:
|
421 |
-
raise ValueError(
|
422 |
-
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
423 |
-
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
424 |
-
)
|
425 |
-
|
426 |
-
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
427 |
-
version.parse(unet.config._diffusers_version).base_version
|
428 |
-
) < version.parse("0.9.0.dev0")
|
429 |
-
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
430 |
-
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
431 |
-
deprecation_message = (
|
432 |
-
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
433 |
-
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
434 |
-
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
435 |
-
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
436 |
-
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
437 |
-
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
438 |
-
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
439 |
-
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
440 |
-
" the `unet/config.json` file"
|
441 |
-
)
|
442 |
-
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
443 |
-
new_config = dict(unet.config)
|
444 |
-
new_config["sample_size"] = 64
|
445 |
-
unet._internal_dict = FrozenDict(new_config)
|
446 |
-
|
447 |
self.register_modules(
|
448 |
vae=vae,
|
449 |
text_encoder=text_encoder,
|
|
|
450 |
tokenizer=tokenizer,
|
|
|
451 |
unet=unet,
|
452 |
scheduler=scheduler,
|
453 |
-
safety_checker=safety_checker,
|
454 |
-
feature_extractor=feature_extractor,
|
455 |
image_encoder=image_encoder,
|
|
|
456 |
)
|
|
|
457 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
458 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
459 |
-
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
460 |
|
461 |
-
|
462 |
-
r"""
|
463 |
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
464 |
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
465 |
-
"""
|
466 |
-
self.vae.enable_slicing()
|
467 |
|
468 |
-
|
469 |
-
r"""
|
470 |
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
471 |
-
computing decoding in one step.
|
472 |
-
"""
|
473 |
-
self.vae.disable_slicing()
|
474 |
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
processing larger images.
|
480 |
-
"""
|
481 |
-
self.vae.enable_tiling()
|
482 |
-
|
483 |
-
def disable_vae_tiling(self):
|
484 |
-
r"""
|
485 |
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
486 |
-
computing decoding in one step.
|
487 |
-
"""
|
488 |
-
self.vae.disable_tiling()
|
489 |
-
|
490 |
-
def _encode_prompt(
|
491 |
-
self,
|
492 |
-
prompt,
|
493 |
-
device,
|
494 |
-
num_images_per_prompt,
|
495 |
-
do_classifier_free_guidance,
|
496 |
-
negative_prompt=None,
|
497 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
498 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
499 |
-
lora_scale: Optional[float] = None,
|
500 |
-
**kwargs,
|
501 |
-
):
|
502 |
-
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
503 |
-
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
504 |
-
|
505 |
-
prompt_embeds_tuple = self.encode_prompt(
|
506 |
-
prompt=prompt,
|
507 |
-
device=device,
|
508 |
-
num_images_per_prompt=num_images_per_prompt,
|
509 |
-
do_classifier_free_guidance=do_classifier_free_guidance,
|
510 |
-
negative_prompt=negative_prompt,
|
511 |
-
prompt_embeds=prompt_embeds,
|
512 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
513 |
-
lora_scale=lora_scale,
|
514 |
-
**kwargs,
|
515 |
-
)
|
516 |
-
|
517 |
-
# concatenate for backwards comp
|
518 |
-
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
519 |
-
|
520 |
-
return prompt_embeds
|
521 |
|
522 |
def encode_prompt(
|
523 |
self,
|
524 |
-
prompt,
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
|
|
|
|
529 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
530 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
531 |
lora_scale: Optional[float] = None,
|
532 |
clip_skip: Optional[int] = None,
|
533 |
):
|
534 |
r"""
|
535 |
Encodes the prompt into text encoder hidden states.
|
|
|
536 |
Args:
|
537 |
prompt (`str` or `List[str]`, *optional*):
|
538 |
prompt to be encoded
|
|
|
|
|
|
|
539 |
device: (`torch.device`):
|
540 |
torch device
|
541 |
num_images_per_prompt (`int`):
|
@@ -546,6 +508,9 @@ class StableDiffusionPipeline(
|
|
546 |
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
547 |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
548 |
less than `1`).
|
|
|
|
|
|
|
549 |
prompt_embeds (`torch.FloatTensor`, *optional*):
|
550 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
551 |
provided, text embeddings will be generated from `prompt` input argument.
|
@@ -553,104 +518,118 @@ class StableDiffusionPipeline(
|
|
553 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
554 |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
555 |
argument.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
lora_scale (`float`, *optional*):
|
557 |
-
A
|
558 |
clip_skip (`int`, *optional*):
|
559 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
560 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
561 |
"""
|
|
|
|
|
562 |
# set lora scale so that monkey patched LoRA
|
563 |
# function of text encoder can correctly access it
|
564 |
-
if lora_scale is not None and isinstance(self,
|
565 |
self._lora_scale = lora_scale
|
566 |
|
567 |
# dynamically adjust the LoRA scale
|
568 |
-
if not
|
569 |
-
|
570 |
-
|
571 |
-
|
|
|
572 |
|
573 |
-
|
574 |
-
|
575 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
576 |
batch_size = len(prompt)
|
577 |
else:
|
578 |
batch_size = prompt_embeds.shape[0]
|
579 |
|
|
|
|
|
|
|
|
|
|
|
|
|
580 |
if prompt_embeds is None:
|
581 |
-
|
582 |
-
if isinstance(
|
583 |
-
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
584 |
-
|
585 |
-
text_inputs = self.tokenizer(
|
586 |
-
prompt,
|
587 |
-
padding="max_length",
|
588 |
-
max_length=self.tokenizer.model_max_length,
|
589 |
-
truncation=True,
|
590 |
-
return_tensors="pt",
|
591 |
-
)
|
592 |
-
text_input_ids = text_inputs.input_ids
|
593 |
-
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
594 |
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
|
|
|
|
|
|
|
|
604 |
)
|
605 |
|
606 |
-
|
607 |
-
|
608 |
-
else:
|
609 |
-
attention_mask = None
|
610 |
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
# all the hidden states from the encoder layers. Then index into
|
620 |
-
# the tuple to access the hidden states from the desired layer.
|
621 |
-
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
622 |
-
# We also need to apply the final LayerNorm here to not mess with the
|
623 |
-
# representations. The `last_hidden_states` that we typically use for
|
624 |
-
# obtaining the final prompt representations passes through the LayerNorm
|
625 |
-
# layer.
|
626 |
-
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
627 |
|
628 |
-
|
629 |
-
prompt_embeds_dtype = self.text_encoder.dtype
|
630 |
-
elif self.unet is not None:
|
631 |
-
prompt_embeds_dtype = self.unet.dtype
|
632 |
-
else:
|
633 |
-
prompt_embeds_dtype = prompt_embeds.dtype
|
634 |
|
635 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
636 |
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
641 |
|
642 |
# get unconditional embeddings for classifier free guidance
|
643 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
644 |
uncond_tokens: List[str]
|
645 |
-
if
|
646 |
-
uncond_tokens = [""] * batch_size
|
647 |
-
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
648 |
raise TypeError(
|
649 |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
650 |
f" {type(prompt)}."
|
651 |
)
|
652 |
-
elif isinstance(negative_prompt, str):
|
653 |
-
uncond_tokens = [negative_prompt]
|
654 |
elif batch_size != len(negative_prompt):
|
655 |
raise ValueError(
|
656 |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
@@ -658,47 +637,77 @@ class StableDiffusionPipeline(
|
|
658 |
" the batch size of `prompt`."
|
659 |
)
|
660 |
else:
|
661 |
-
uncond_tokens = negative_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
662 |
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
padding="max_length",
|
671 |
-
max_length=max_length,
|
672 |
-
truncation=True,
|
673 |
-
return_tensors="pt",
|
674 |
-
)
|
675 |
|
676 |
-
|
677 |
-
attention_mask = uncond_input.attention_mask.to(device)
|
678 |
-
else:
|
679 |
-
attention_mask = None
|
680 |
|
681 |
-
negative_prompt_embeds =
|
682 |
-
|
683 |
-
|
684 |
-
)
|
685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
|
687 |
if do_classifier_free_guidance:
|
688 |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
689 |
seq_len = negative_prompt_embeds.shape[1]
|
690 |
|
691 |
-
|
|
|
|
|
|
|
692 |
|
693 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
694 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
695 |
|
696 |
-
|
697 |
-
|
698 |
-
|
|
|
|
|
|
|
|
|
699 |
|
700 |
-
|
|
|
|
|
|
|
701 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
702 |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
703 |
dtype = next(self.image_encoder.parameters()).dtype
|
704 |
|
@@ -723,8 +732,9 @@ class StableDiffusionPipeline(
|
|
723 |
|
724 |
return image_embeds, uncond_image_embeds
|
725 |
|
|
|
726 |
def prepare_ip_adapter_image_embeds(
|
727 |
-
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
|
728 |
):
|
729 |
if ip_adapter_image_embeds is None:
|
730 |
if not isinstance(ip_adapter_image, list):
|
@@ -748,40 +758,33 @@ class StableDiffusionPipeline(
|
|
748 |
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
749 |
)
|
750 |
|
751 |
-
if
|
752 |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
753 |
single_image_embeds = single_image_embeds.to(device)
|
754 |
|
755 |
image_embeds.append(single_image_embeds)
|
756 |
else:
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
def decode_latents(self, latents):
|
775 |
-
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
776 |
-
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
777 |
|
778 |
-
|
779 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
780 |
-
image = (image / 2 + 0.5).clamp(0, 1)
|
781 |
-
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
782 |
-
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
783 |
-
return image
|
784 |
|
|
|
785 |
def prepare_extra_step_kwargs(self, generator, eta):
|
786 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
787 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
@@ -802,12 +805,16 @@ class StableDiffusionPipeline(
|
|
802 |
def check_inputs(
|
803 |
self,
|
804 |
prompt,
|
|
|
805 |
height,
|
806 |
width,
|
807 |
callback_steps,
|
808 |
negative_prompt=None,
|
|
|
809 |
prompt_embeds=None,
|
810 |
negative_prompt_embeds=None,
|
|
|
|
|
811 |
ip_adapter_image=None,
|
812 |
ip_adapter_image_embeds=None,
|
813 |
callback_on_step_end_tensor_inputs=None,
|
@@ -820,6 +827,7 @@ class StableDiffusionPipeline(
|
|
820 |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
821 |
f" {type(callback_steps)}."
|
822 |
)
|
|
|
823 |
if callback_on_step_end_tensor_inputs is not None and not all(
|
824 |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
825 |
):
|
@@ -832,18 +840,30 @@ class StableDiffusionPipeline(
|
|
832 |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
833 |
" only forward one of the two."
|
834 |
)
|
|
|
|
|
|
|
|
|
|
|
835 |
elif prompt is None and prompt_embeds is None:
|
836 |
raise ValueError(
|
837 |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
838 |
)
|
839 |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
840 |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
|
841 |
|
842 |
if negative_prompt is not None and negative_prompt_embeds is not None:
|
843 |
raise ValueError(
|
844 |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
845 |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
846 |
)
|
|
|
|
|
|
|
|
|
|
|
847 |
|
848 |
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
849 |
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
@@ -853,11 +873,32 @@ class StableDiffusionPipeline(
|
|
853 |
f" {negative_prompt_embeds.shape}."
|
854 |
)
|
855 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
856 |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
857 |
raise ValueError(
|
858 |
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
859 |
)
|
860 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
861 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
862 |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
863 |
if isinstance(generator, list) and len(generator) != batch_size:
|
@@ -875,94 +916,61 @@ class StableDiffusionPipeline(
|
|
875 |
latents = latents * self.scheduler.init_noise_sigma
|
876 |
return latents
|
877 |
|
878 |
-
def
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
883 |
-
Args:
|
884 |
-
s1 (`float`):
|
885 |
-
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
886 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
887 |
-
s2 (`float`):
|
888 |
-
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
889 |
-
mitigate "oversmoothing effect" in the enhanced denoising process.
|
890 |
-
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
891 |
-
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
892 |
-
"""
|
893 |
-
if not hasattr(self, "unet"):
|
894 |
-
raise ValueError("The pipeline must have `unet` for using FreeU.")
|
895 |
-
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
|
896 |
|
897 |
-
|
898 |
-
|
899 |
-
|
|
|
900 |
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
906 |
-
<Tip warning={true}>
|
907 |
-
This API is 🧪 experimental.
|
908 |
-
</Tip>
|
909 |
-
Args:
|
910 |
-
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
911 |
-
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
912 |
-
"""
|
913 |
-
self.fusing_unet = False
|
914 |
-
self.fusing_vae = False
|
915 |
-
|
916 |
-
if unet:
|
917 |
-
self.fusing_unet = True
|
918 |
-
self.unet.fuse_qkv_projections()
|
919 |
-
self.unet.set_attn_processor(FusedAttnProcessor2_0())
|
920 |
-
|
921 |
-
if vae:
|
922 |
-
if not isinstance(self.vae, AutoencoderKL):
|
923 |
-
raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")
|
924 |
-
|
925 |
-
self.fusing_vae = True
|
926 |
-
self.vae.fuse_qkv_projections()
|
927 |
-
self.vae.set_attn_processor(FusedAttnProcessor2_0())
|
928 |
-
|
929 |
-
# Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.unfuse_qkv_projections
|
930 |
-
def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
|
931 |
-
"""Disable QKV projection fusion if enabled.
|
932 |
-
<Tip warning={true}>
|
933 |
-
This API is 🧪 experimental.
|
934 |
-
</Tip>
|
935 |
-
Args:
|
936 |
-
unet (`bool`, defaults to `True`): To apply fusion on the UNet.
|
937 |
-
vae (`bool`, defaults to `True`): To apply fusion on the VAE.
|
938 |
-
"""
|
939 |
-
if unet:
|
940 |
-
if not self.fusing_unet:
|
941 |
-
logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
|
942 |
-
else:
|
943 |
-
self.unet.unfuse_qkv_projections()
|
944 |
-
self.fusing_unet = False
|
945 |
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
952 |
|
953 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
954 |
-
def get_guidance_scale_embedding(
|
|
|
|
|
955 |
"""
|
956 |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
|
|
957 |
Args:
|
958 |
-
|
959 |
-
|
960 |
embedding_dim (`int`, *optional*, defaults to 512):
|
961 |
-
|
962 |
-
dtype:
|
963 |
-
|
|
|
964 |
Returns:
|
965 |
-
`torch.FloatTensor`: Embedding vectors with shape `(len(
|
966 |
"""
|
967 |
assert len(w.shape) == 1
|
968 |
w = w * 1000.0
|
@@ -976,7 +984,7 @@ class StableDiffusionPipeline(
|
|
976 |
emb = torch.nn.functional.pad(emb, (0, 1))
|
977 |
assert emb.shape == (w.shape[0], embedding_dim)
|
978 |
return emb
|
979 |
-
|
980 |
def pred_z0(self, sample, model_output, timestep):
|
981 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep].to(sample.device)
|
982 |
|
@@ -998,19 +1006,18 @@ class StableDiffusionPipeline(
|
|
998 |
return pred_original_sample
|
999 |
|
1000 |
def pred_x0(self, latents, noise_pred, t, generator, device, prompt_embeds, output_type):
|
1001 |
-
|
1002 |
pred_z0 = self.pred_z0(latents, noise_pred, t)
|
1003 |
pred_x0 = self.vae.decode(
|
1004 |
pred_z0 / self.vae.config.scaling_factor,
|
1005 |
return_dict=False,
|
1006 |
generator=generator
|
1007 |
)[0]
|
1008 |
-
pred_x0, ____ = self.run_safety_checker(pred_x0, device, prompt_embeds.dtype)
|
1009 |
do_denormalize = [True] * pred_x0.shape[0]
|
1010 |
pred_x0 = self.image_processor.postprocess(pred_x0, output_type=output_type, do_denormalize=do_denormalize)
|
1011 |
|
1012 |
return pred_x0
|
1013 |
-
|
1014 |
@property
|
1015 |
def guidance_scale(self):
|
1016 |
return self._guidance_scale
|
@@ -1034,6 +1041,10 @@ class StableDiffusionPipeline(
|
|
1034 |
def cross_attention_kwargs(self):
|
1035 |
return self._cross_attention_kwargs
|
1036 |
|
|
|
|
|
|
|
|
|
1037 |
@property
|
1038 |
def num_timesteps(self):
|
1039 |
return self._num_timesteps
|
@@ -1041,7 +1052,7 @@ class StableDiffusionPipeline(
|
|
1041 |
@property
|
1042 |
def interrupt(self):
|
1043 |
return self._interrupt
|
1044 |
-
|
1045 |
@property
|
1046 |
def pag_scale(self):
|
1047 |
return self._pag_scale
|
@@ -1069,50 +1080,71 @@ class StableDiffusionPipeline(
|
|
1069 |
@property
|
1070 |
def pag_applied_layers_index(self):
|
1071 |
return self._pag_applied_layers_index
|
1072 |
-
|
1073 |
-
|
1074 |
@torch.no_grad()
|
1075 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1076 |
def __call__(
|
1077 |
self,
|
1078 |
prompt: Union[str, List[str]] = None,
|
|
|
1079 |
height: Optional[int] = None,
|
1080 |
width: Optional[int] = None,
|
1081 |
num_inference_steps: int = 50,
|
1082 |
timesteps: List[int] = None,
|
1083 |
-
|
|
|
1084 |
pag_scale: float = 0.0,
|
1085 |
pag_adaptive_scaling: float = 0.0,
|
1086 |
pag_drop_rate: float = 0.5,
|
1087 |
-
pag_applied_layers: List[str] = ['
|
1088 |
-
pag_applied_layers_index: List[str] =
|
1089 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
|
1090 |
num_images_per_prompt: Optional[int] = 1,
|
1091 |
eta: float = 0.0,
|
1092 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1093 |
latents: Optional[torch.FloatTensor] = None,
|
1094 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1095 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
1096 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1097 |
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
1098 |
output_type: Optional[str] = "pil",
|
1099 |
return_dict: bool = True,
|
1100 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1101 |
guidance_rescale: float = 0.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
1102 |
clip_skip: Optional[int] = None,
|
1103 |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1104 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1105 |
**kwargs,
|
1106 |
):
|
1107 |
r"""
|
1108 |
-
|
|
|
1109 |
Args:
|
1110 |
prompt (`str` or `List[str]`, *optional*):
|
1111 |
-
The prompt or prompts to guide image generation. If not defined,
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
1115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1116 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
1117 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1118 |
expense of slower inference.
|
@@ -1120,49 +1152,102 @@ class StableDiffusionPipeline(
|
|
1120 |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1121 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1122 |
passed will be used. Must be in descending order.
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1126 |
negative_prompt (`str` or `List[str]`, *optional*):
|
1127 |
-
The prompt or prompts to guide
|
1128 |
-
|
|
|
|
|
|
|
|
|
1129 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1130 |
The number of images to generate per prompt.
|
1131 |
eta (`float`, *optional*, defaults to 0.0):
|
1132 |
-
Corresponds to parameter eta (η)
|
1133 |
-
|
1134 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1135 |
-
|
1136 |
-
generation deterministic.
|
1137 |
latents (`torch.FloatTensor`, *optional*):
|
1138 |
-
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
1139 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1140 |
-
tensor
|
1141 |
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1142 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs
|
1143 |
-
provided, text embeddings
|
1144 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1145 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs
|
1146 |
-
not provided,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1147 |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1148 |
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1149 |
-
Pre-generated image embeddings for IP-Adapter.
|
|
|
|
|
1150 |
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1151 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
1152 |
-
The output format of the
|
|
|
1153 |
return_dict (`bool`, *optional*, defaults to `True`):
|
1154 |
-
Whether or not to return a [`~pipelines.
|
1155 |
-
plain tuple.
|
1156 |
cross_attention_kwargs (`dict`, *optional*):
|
1157 |
-
A kwargs dictionary that if specified is passed along to the
|
1158 |
-
|
|
|
1159 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1160 |
-
Guidance rescale factor
|
1161 |
-
Flawed](https://arxiv.org/pdf/2305.08891.pdf)
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
the
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1166 |
callback_on_step_end (`Callable`, *optional*):
|
1167 |
A function that calls at the end of each denoising steps during the inference. The function is called
|
1168 |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
@@ -1172,13 +1257,13 @@ class StableDiffusionPipeline(
|
|
1172 |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1173 |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1174 |
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
1175 |
Examples:
|
|
|
1176 |
Returns:
|
1177 |
-
[`~pipelines.
|
1178 |
-
|
1179 |
-
|
1180 |
-
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
1181 |
-
"not-safe-for-work" (nsfw) content.
|
1182 |
"""
|
1183 |
|
1184 |
callback = kwargs.pop("callback", None)
|
@@ -1188,29 +1273,35 @@ class StableDiffusionPipeline(
|
|
1188 |
deprecate(
|
1189 |
"callback",
|
1190 |
"1.0.0",
|
1191 |
-
"Passing `callback` as an input argument to `__call__` is deprecated, consider
|
1192 |
)
|
1193 |
if callback_steps is not None:
|
1194 |
deprecate(
|
1195 |
"callback_steps",
|
1196 |
"1.0.0",
|
1197 |
-
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider
|
1198 |
)
|
1199 |
|
1200 |
# 0. Default height and width to unet
|
1201 |
-
height = height or self.
|
1202 |
-
width = width or self.
|
1203 |
-
|
|
|
|
|
1204 |
|
1205 |
# 1. Check inputs. Raise error if not correct
|
1206 |
self.check_inputs(
|
1207 |
prompt,
|
|
|
1208 |
height,
|
1209 |
width,
|
1210 |
callback_steps,
|
1211 |
negative_prompt,
|
|
|
1212 |
prompt_embeds,
|
1213 |
negative_prompt_embeds,
|
|
|
|
|
1214 |
ip_adapter_image,
|
1215 |
ip_adapter_image_embeds,
|
1216 |
callback_on_step_end_tensor_inputs,
|
@@ -1220,14 +1311,15 @@ class StableDiffusionPipeline(
|
|
1220 |
self._guidance_rescale = guidance_rescale
|
1221 |
self._clip_skip = clip_skip
|
1222 |
self._cross_attention_kwargs = cross_attention_kwargs
|
|
|
1223 |
self._interrupt = False
|
1224 |
-
|
1225 |
self._pag_scale = pag_scale
|
1226 |
self._pag_adaptive_scaling = pag_adaptive_scaling
|
1227 |
self._pag_drop_rate = pag_drop_rate
|
1228 |
self._pag_applied_layers = pag_applied_layers
|
1229 |
self._pag_applied_layers_index = pag_applied_layers_index
|
1230 |
-
|
1231 |
# 2. Define call parameters
|
1232 |
if prompt is not None and isinstance(prompt, str):
|
1233 |
batch_size = 1
|
@@ -1243,37 +1335,27 @@ class StableDiffusionPipeline(
|
|
1243 |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1244 |
)
|
1245 |
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1252 |
prompt_embeds=prompt_embeds,
|
1253 |
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
|
1254 |
lora_scale=lora_scale,
|
1255 |
clip_skip=self.clip_skip,
|
1256 |
)
|
1257 |
|
1258 |
-
# For classifier free guidance, we need to do two forward passes.
|
1259 |
-
# Here we concatenate the unconditional and text embeddings into a single batch
|
1260 |
-
# to avoid doing two forward passes
|
1261 |
-
|
1262 |
-
#cfg
|
1263 |
-
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
1264 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1265 |
-
#pag
|
1266 |
-
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
1267 |
-
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds])
|
1268 |
-
#both
|
1269 |
-
elif self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
1270 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds])
|
1271 |
-
|
1272 |
-
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1273 |
-
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1274 |
-
ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt
|
1275 |
-
)
|
1276 |
-
|
1277 |
# 4. Prepare timesteps
|
1278 |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1279 |
|
@@ -1293,14 +1375,80 @@ class StableDiffusionPipeline(
|
|
1293 |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1294 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1295 |
|
1296 |
-
#
|
1297 |
-
|
1298 |
-
|
1299 |
-
|
1300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1301 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1302 |
|
1303 |
-
#
|
1304 |
timestep_cond = None
|
1305 |
if self.unet.config.time_cond_proj_dim is not None:
|
1306 |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
@@ -1308,7 +1456,7 @@ class StableDiffusionPipeline(
|
|
1308 |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1309 |
).to(device=device, dtype=latents.dtype)
|
1310 |
|
1311 |
-
#
|
1312 |
if self.do_adversarial_guidance:
|
1313 |
down_layers = []
|
1314 |
mid_layers = []
|
@@ -1324,14 +1472,13 @@ class StableDiffusionPipeline(
|
|
1324 |
up_layers.append(module)
|
1325 |
else:
|
1326 |
raise ValueError(f"Invalid layer type: {layer_type}")
|
1327 |
-
|
1328 |
-
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1329 |
self._num_timesteps = len(timesteps)
|
1330 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1331 |
for i, t in enumerate(timesteps):
|
1332 |
if self.interrupt:
|
1333 |
continue
|
1334 |
-
|
1335 |
#cfg
|
1336 |
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
1337 |
latent_model_input = torch.cat([latents] * 2)
|
@@ -1344,7 +1491,7 @@ class StableDiffusionPipeline(
|
|
1344 |
#no
|
1345 |
else:
|
1346 |
latent_model_input = latents
|
1347 |
-
|
1348 |
# change attention layer in UNet if use PAG
|
1349 |
if self.do_adversarial_guidance:
|
1350 |
|
@@ -1352,26 +1499,51 @@ class StableDiffusionPipeline(
|
|
1352 |
replace_processor = PAGCFGIdentitySelfAttnProcessor()
|
1353 |
else:
|
1354 |
replace_processor = PAGIdentitySelfAttnProcessor()
|
1355 |
-
|
1356 |
-
|
1357 |
-
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
|
1365 |
-
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
|
1371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1372 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1373 |
-
|
1374 |
# predict the noise residual
|
|
|
|
|
|
|
|
|
1375 |
noise_pred = self.unet(
|
1376 |
latent_model_input,
|
1377 |
t,
|
@@ -1381,20 +1553,13 @@ class StableDiffusionPipeline(
|
|
1381 |
added_cond_kwargs=added_cond_kwargs,
|
1382 |
return_dict=False,
|
1383 |
)[0]
|
1384 |
-
|
1385 |
# perform guidance
|
1386 |
-
|
1387 |
-
# cfg
|
1388 |
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
1389 |
-
|
1390 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1391 |
-
|
1392 |
-
delta = noise_pred_text - noise_pred_uncond
|
1393 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * delta
|
1394 |
-
|
1395 |
# pag
|
1396 |
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
1397 |
-
|
1398 |
noise_pred_original, noise_pred_perturb = noise_pred.chunk(2)
|
1399 |
|
1400 |
signal_scale = self.pag_scale
|
@@ -1423,7 +1588,12 @@ class StableDiffusionPipeline(
|
|
1423 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1424 |
|
1425 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
1426 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
1427 |
|
1428 |
if callback_on_step_end is not None:
|
1429 |
callback_kwargs = {}
|
@@ -1434,6 +1604,12 @@ class StableDiffusionPipeline(
|
|
1434 |
latents = callback_outputs.pop("latents", latents)
|
1435 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1436 |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
|
|
|
|
|
|
|
|
|
|
|
1437 |
|
1438 |
# call the callback, if provided
|
1439 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
@@ -1442,44 +1618,93 @@ class StableDiffusionPipeline(
|
|
1442 |
step_idx = i // getattr(self.scheduler, "order", 1)
|
1443 |
callback(step_idx, t, latents)
|
1444 |
|
|
|
|
|
|
|
1445 |
if not output_type == "latent":
|
1446 |
-
|
1447 |
-
|
1448 |
-
|
1449 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1450 |
else:
|
1451 |
image = latents
|
1452 |
-
has_nsfw_concept = None
|
1453 |
|
1454 |
-
if
|
1455 |
-
|
1456 |
-
|
1457 |
-
|
1458 |
|
1459 |
-
|
1460 |
|
1461 |
# Offload all models
|
1462 |
self.maybe_free_model_hooks()
|
1463 |
|
1464 |
if not return_dict:
|
1465 |
-
return (image,
|
1466 |
-
|
1467 |
-
# change attention layer in UNet if use PAG
|
1468 |
-
if self.do_adversarial_guidance:
|
1469 |
-
drop_layers = self.pag_applied_layers_index
|
1470 |
-
for drop_layer in drop_layers:
|
1471 |
-
try:
|
1472 |
-
if drop_layer[0] == 'd':
|
1473 |
-
down_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
1474 |
-
elif drop_layer[0] == 'm':
|
1475 |
-
mid_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
1476 |
-
elif drop_layer[0] == 'u':
|
1477 |
-
up_layers[int(drop_layer[1])].processor = AttnProcessor2_0()
|
1478 |
-
else:
|
1479 |
-
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
1480 |
-
except IndexError:
|
1481 |
-
raise ValueError(
|
1482 |
-
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
1483 |
-
)
|
1484 |
|
1485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation of StableDiffusionXLPAGPipeline
|
2 |
|
3 |
import inspect
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
5 |
|
6 |
import torch
|
7 |
import torch.nn.functional as F
|
8 |
from packaging import version
|
|
|
9 |
|
10 |
+
from transformers import (
|
11 |
+
CLIPImageProcessor,
|
12 |
+
CLIPTextModel,
|
13 |
+
CLIPTextModelWithProjection,
|
14 |
+
CLIPTokenizer,
|
15 |
+
CLIPVisionModelWithProjection,
|
16 |
+
)
|
17 |
+
|
18 |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
19 |
+
from diffusers.loaders import (
|
20 |
+
FromSingleFileMixin,
|
21 |
+
IPAdapterMixin,
|
22 |
+
StableDiffusionXLLoraLoaderMixin,
|
23 |
+
TextualInversionLoaderMixin,
|
24 |
+
)
|
25 |
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
26 |
+
from diffusers.models.attention_processor import (
|
27 |
+
AttnProcessor2_0,
|
28 |
+
FusedAttnProcessor2_0,
|
29 |
+
LoRAAttnProcessor2_0,
|
30 |
+
LoRAXFormersAttnProcessor,
|
31 |
+
XFormersAttnProcessor,
|
32 |
+
)
|
33 |
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
34 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
35 |
from diffusers.utils import (
|
36 |
USE_PEFT_BACKEND,
|
37 |
deprecate,
|
38 |
+
is_invisible_watermark_available,
|
39 |
+
is_torch_xla_available,
|
40 |
logging,
|
41 |
replace_example_docstring,
|
42 |
scale_lora_layers,
|
43 |
unscale_lora_layers,
|
44 |
)
|
45 |
from diffusers.utils.torch_utils import randn_tensor
|
46 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
47 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
|
|
48 |
|
49 |
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
|
50 |
|
|
|
51 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
52 |
|
53 |
EXAMPLE_DOC_STRING = """
|
54 |
Examples:
|
55 |
```py
|
56 |
>>> import torch
|
57 |
+
>>> from diffusers import StableDiffusionXLPipeline
|
58 |
+
|
59 |
+
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
60 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
61 |
+
... )
|
62 |
>>> pipe = pipe.to("cuda")
|
63 |
+
|
64 |
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
65 |
>>> image = pipe(prompt).images[0]
|
66 |
```
|
|
|
292 |
|
293 |
return hidden_states
|
294 |
|
295 |
+
if is_invisible_watermark_available():
|
296 |
+
from .watermark import StableDiffusionXLWatermarker
|
297 |
+
|
298 |
+
if is_torch_xla_available():
|
299 |
+
import torch_xla.core.xla_model as xm
|
300 |
+
|
301 |
+
XLA_AVAILABLE = True
|
302 |
+
else:
|
303 |
+
XLA_AVAILABLE = False
|
304 |
+
|
305 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
306 |
|
307 |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
308 |
"""
|
|
|
328 |
"""
|
329 |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
330 |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
331 |
+
|
332 |
Args:
|
333 |
scheduler (`SchedulerMixin`):
|
334 |
The scheduler to get timesteps from.
|
335 |
num_inference_steps (`int`):
|
336 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
337 |
+
must be `None`.
|
338 |
device (`str` or `torch.device`, *optional*):
|
339 |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
340 |
timesteps (`List[int]`, *optional*):
|
341 |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
342 |
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
343 |
must be `None`.
|
344 |
+
|
345 |
Returns:
|
346 |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
347 |
second element is the number of inference steps.
|
|
|
361 |
timesteps = scheduler.timesteps
|
362 |
return timesteps, num_inference_steps
|
363 |
|
364 |
+
class StableDiffusionXLPipeline(
|
365 |
+
DiffusionPipeline,
|
366 |
+
StableDiffusionMixin,
|
367 |
+
FromSingleFileMixin,
|
368 |
+
StableDiffusionXLLoraLoaderMixin,
|
369 |
+
TextualInversionLoaderMixin,
|
370 |
+
IPAdapterMixin,
|
371 |
):
|
372 |
r"""
|
373 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
374 |
+
|
375 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
376 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
377 |
+
|
378 |
The pipeline also inherits the following loading methods:
|
379 |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
|
|
|
|
380 |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
381 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
382 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
383 |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
384 |
+
|
385 |
Args:
|
386 |
vae ([`AutoencoderKL`]):
|
387 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
388 |
+
text_encoder ([`CLIPTextModel`]):
|
389 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
390 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
391 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
392 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
393 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
394 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
395 |
+
specifically the
|
396 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
397 |
+
variant.
|
398 |
+
tokenizer (`CLIPTokenizer`):
|
399 |
+
Tokenizer of class
|
400 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
401 |
+
tokenizer_2 (`CLIPTokenizer`):
|
402 |
+
Second Tokenizer of class
|
403 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
404 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
405 |
scheduler ([`SchedulerMixin`]):
|
406 |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
407 |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
408 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
409 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
410 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
411 |
+
add_watermarker (`bool`, *optional*):
|
412 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
413 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
414 |
+
watermarker will be used.
|
415 |
"""
|
416 |
|
417 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
418 |
+
_optional_components = [
|
419 |
+
"tokenizer",
|
420 |
+
"tokenizer_2",
|
421 |
+
"text_encoder",
|
422 |
+
"text_encoder_2",
|
423 |
+
"image_encoder",
|
424 |
+
"feature_extractor",
|
425 |
+
]
|
426 |
+
_callback_tensor_inputs = [
|
427 |
+
"latents",
|
428 |
+
"prompt_embeds",
|
429 |
+
"negative_prompt_embeds",
|
430 |
+
"add_text_embeds",
|
431 |
+
"add_time_ids",
|
432 |
+
"negative_pooled_prompt_embeds",
|
433 |
+
"negative_add_time_ids",
|
434 |
+
]
|
435 |
|
436 |
def __init__(
|
437 |
self,
|
438 |
vae: AutoencoderKL,
|
439 |
text_encoder: CLIPTextModel,
|
440 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
441 |
tokenizer: CLIPTokenizer,
|
442 |
+
tokenizer_2: CLIPTokenizer,
|
443 |
unet: UNet2DConditionModel,
|
444 |
scheduler: KarrasDiffusionSchedulers,
|
|
|
|
|
445 |
image_encoder: CLIPVisionModelWithProjection = None,
|
446 |
+
feature_extractor: CLIPImageProcessor = None,
|
447 |
+
force_zeros_for_empty_prompt: bool = True,
|
448 |
+
add_watermarker: Optional[bool] = None,
|
449 |
):
|
450 |
super().__init__()
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
self.register_modules(
|
453 |
vae=vae,
|
454 |
text_encoder=text_encoder,
|
455 |
+
text_encoder_2=text_encoder_2,
|
456 |
tokenizer=tokenizer,
|
457 |
+
tokenizer_2=tokenizer_2,
|
458 |
unet=unet,
|
459 |
scheduler=scheduler,
|
|
|
|
|
460 |
image_encoder=image_encoder,
|
461 |
+
feature_extractor=feature_extractor,
|
462 |
)
|
463 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
464 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
465 |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
466 |
|
467 |
+
self.default_sample_size = self.unet.config.sample_size
|
|
|
|
|
|
|
|
|
|
|
468 |
|
469 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
+
if add_watermarker:
|
472 |
+
self.watermark = StableDiffusionXLWatermarker()
|
473 |
+
else:
|
474 |
+
self.watermark = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
def encode_prompt(
|
477 |
self,
|
478 |
+
prompt: str,
|
479 |
+
prompt_2: Optional[str] = None,
|
480 |
+
device: Optional[torch.device] = None,
|
481 |
+
num_images_per_prompt: int = 1,
|
482 |
+
do_classifier_free_guidance: bool = True,
|
483 |
+
negative_prompt: Optional[str] = None,
|
484 |
+
negative_prompt_2: Optional[str] = None,
|
485 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
486 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
487 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
488 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
489 |
lora_scale: Optional[float] = None,
|
490 |
clip_skip: Optional[int] = None,
|
491 |
):
|
492 |
r"""
|
493 |
Encodes the prompt into text encoder hidden states.
|
494 |
+
|
495 |
Args:
|
496 |
prompt (`str` or `List[str]`, *optional*):
|
497 |
prompt to be encoded
|
498 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
499 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
500 |
+
used in both text-encoders
|
501 |
device: (`torch.device`):
|
502 |
torch device
|
503 |
num_images_per_prompt (`int`):
|
|
|
508 |
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
509 |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
510 |
less than `1`).
|
511 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
512 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
513 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
514 |
prompt_embeds (`torch.FloatTensor`, *optional*):
|
515 |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
516 |
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
518 |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
519 |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
520 |
argument.
|
521 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
522 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
523 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
524 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
525 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
526 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
527 |
+
input argument.
|
528 |
lora_scale (`float`, *optional*):
|
529 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
530 |
clip_skip (`int`, *optional*):
|
531 |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
532 |
the output of the pre-final layer will be used for computing the prompt embeddings.
|
533 |
"""
|
534 |
+
device = device or self._execution_device
|
535 |
+
|
536 |
# set lora scale so that monkey patched LoRA
|
537 |
# function of text encoder can correctly access it
|
538 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
539 |
self._lora_scale = lora_scale
|
540 |
|
541 |
# dynamically adjust the LoRA scale
|
542 |
+
if self.text_encoder is not None:
|
543 |
+
if not USE_PEFT_BACKEND:
|
544 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
545 |
+
else:
|
546 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
547 |
|
548 |
+
if self.text_encoder_2 is not None:
|
549 |
+
if not USE_PEFT_BACKEND:
|
550 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
551 |
+
else:
|
552 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
553 |
+
|
554 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
555 |
+
|
556 |
+
if prompt is not None:
|
557 |
batch_size = len(prompt)
|
558 |
else:
|
559 |
batch_size = prompt_embeds.shape[0]
|
560 |
|
561 |
+
# Define tokenizers and text encoders
|
562 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
563 |
+
text_encoders = (
|
564 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
565 |
+
)
|
566 |
+
|
567 |
if prompt_embeds is None:
|
568 |
+
prompt_2 = prompt_2 or prompt
|
569 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
|
571 |
+
# textual inversion: process multi-vector tokens if necessary
|
572 |
+
prompt_embeds_list = []
|
573 |
+
prompts = [prompt, prompt_2]
|
574 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
575 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
576 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
577 |
+
|
578 |
+
text_inputs = tokenizer(
|
579 |
+
prompt,
|
580 |
+
padding="max_length",
|
581 |
+
max_length=tokenizer.model_max_length,
|
582 |
+
truncation=True,
|
583 |
+
return_tensors="pt",
|
584 |
)
|
585 |
|
586 |
+
text_input_ids = text_inputs.input_ids
|
587 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
|
588 |
|
589 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
590 |
+
text_input_ids, untruncated_ids
|
591 |
+
):
|
592 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
593 |
+
logger.warning(
|
594 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
595 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
596 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
597 |
|
598 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
|
|
|
|
|
|
|
|
|
|
599 |
|
600 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
601 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
602 |
+
if clip_skip is None:
|
603 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
604 |
+
else:
|
605 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
606 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
607 |
|
608 |
+
prompt_embeds_list.append(prompt_embeds)
|
609 |
+
|
610 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
|
|
611 |
|
612 |
# get unconditional embeddings for classifier free guidance
|
613 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
614 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
615 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
616 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
617 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
618 |
+
negative_prompt = negative_prompt or ""
|
619 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
620 |
+
|
621 |
+
# normalize str to list
|
622 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
623 |
+
negative_prompt_2 = (
|
624 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
625 |
+
)
|
626 |
+
|
627 |
uncond_tokens: List[str]
|
628 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
|
|
|
629 |
raise TypeError(
|
630 |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
631 |
f" {type(prompt)}."
|
632 |
)
|
|
|
|
|
633 |
elif batch_size != len(negative_prompt):
|
634 |
raise ValueError(
|
635 |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
|
637 |
" the batch size of `prompt`."
|
638 |
)
|
639 |
else:
|
640 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
641 |
+
|
642 |
+
negative_prompt_embeds_list = []
|
643 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
644 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
645 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
646 |
+
|
647 |
+
max_length = prompt_embeds.shape[1]
|
648 |
+
uncond_input = tokenizer(
|
649 |
+
negative_prompt,
|
650 |
+
padding="max_length",
|
651 |
+
max_length=max_length,
|
652 |
+
truncation=True,
|
653 |
+
return_tensors="pt",
|
654 |
+
)
|
655 |
|
656 |
+
negative_prompt_embeds = text_encoder(
|
657 |
+
uncond_input.input_ids.to(device),
|
658 |
+
output_hidden_states=True,
|
659 |
+
)
|
660 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
661 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
662 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
|
|
|
|
|
|
|
|
|
|
663 |
|
664 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
|
|
|
|
|
|
665 |
|
666 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
667 |
+
|
668 |
+
if self.text_encoder_2 is not None:
|
669 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
670 |
+
else:
|
671 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
672 |
+
|
673 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
674 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
675 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
676 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
677 |
|
678 |
if do_classifier_free_guidance:
|
679 |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
680 |
seq_len = negative_prompt_embeds.shape[1]
|
681 |
|
682 |
+
if self.text_encoder_2 is not None:
|
683 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
684 |
+
else:
|
685 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
686 |
|
687 |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
688 |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
689 |
|
690 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
691 |
+
bs_embed * num_images_per_prompt, -1
|
692 |
+
)
|
693 |
+
if do_classifier_free_guidance:
|
694 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
695 |
+
bs_embed * num_images_per_prompt, -1
|
696 |
+
)
|
697 |
|
698 |
+
if self.text_encoder is not None:
|
699 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
700 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
701 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
702 |
|
703 |
+
if self.text_encoder_2 is not None:
|
704 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
705 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
706 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
707 |
+
|
708 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
709 |
+
|
710 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
711 |
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
712 |
dtype = next(self.image_encoder.parameters()).dtype
|
713 |
|
|
|
732 |
|
733 |
return image_embeds, uncond_image_embeds
|
734 |
|
735 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
736 |
def prepare_ip_adapter_image_embeds(
|
737 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
738 |
):
|
739 |
if ip_adapter_image_embeds is None:
|
740 |
if not isinstance(ip_adapter_image, list):
|
|
|
758 |
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
759 |
)
|
760 |
|
761 |
+
if do_classifier_free_guidance:
|
762 |
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
763 |
single_image_embeds = single_image_embeds.to(device)
|
764 |
|
765 |
image_embeds.append(single_image_embeds)
|
766 |
else:
|
767 |
+
repeat_dims = [1]
|
768 |
+
image_embeds = []
|
769 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
770 |
+
if do_classifier_free_guidance:
|
771 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
772 |
+
single_image_embeds = single_image_embeds.repeat(
|
773 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
774 |
+
)
|
775 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
776 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
777 |
+
)
|
778 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
779 |
+
else:
|
780 |
+
single_image_embeds = single_image_embeds.repeat(
|
781 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
782 |
+
)
|
783 |
+
image_embeds.append(single_image_embeds)
|
|
|
|
|
|
|
784 |
|
785 |
+
return image_embeds
|
|
|
|
|
|
|
|
|
|
|
786 |
|
787 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
788 |
def prepare_extra_step_kwargs(self, generator, eta):
|
789 |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
790 |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
|
805 |
def check_inputs(
|
806 |
self,
|
807 |
prompt,
|
808 |
+
prompt_2,
|
809 |
height,
|
810 |
width,
|
811 |
callback_steps,
|
812 |
negative_prompt=None,
|
813 |
+
negative_prompt_2=None,
|
814 |
prompt_embeds=None,
|
815 |
negative_prompt_embeds=None,
|
816 |
+
pooled_prompt_embeds=None,
|
817 |
+
negative_pooled_prompt_embeds=None,
|
818 |
ip_adapter_image=None,
|
819 |
ip_adapter_image_embeds=None,
|
820 |
callback_on_step_end_tensor_inputs=None,
|
|
|
827 |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
828 |
f" {type(callback_steps)}."
|
829 |
)
|
830 |
+
|
831 |
if callback_on_step_end_tensor_inputs is not None and not all(
|
832 |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
833 |
):
|
|
|
840 |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
841 |
" only forward one of the two."
|
842 |
)
|
843 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
844 |
+
raise ValueError(
|
845 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
846 |
+
" only forward one of the two."
|
847 |
+
)
|
848 |
elif prompt is None and prompt_embeds is None:
|
849 |
raise ValueError(
|
850 |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
851 |
)
|
852 |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
853 |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
854 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
855 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
856 |
|
857 |
if negative_prompt is not None and negative_prompt_embeds is not None:
|
858 |
raise ValueError(
|
859 |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
860 |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
861 |
)
|
862 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
863 |
+
raise ValueError(
|
864 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
865 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
866 |
+
)
|
867 |
|
868 |
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
869 |
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
|
873 |
f" {negative_prompt_embeds.shape}."
|
874 |
)
|
875 |
|
876 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
877 |
+
raise ValueError(
|
878 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
879 |
+
)
|
880 |
+
|
881 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
882 |
+
raise ValueError(
|
883 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
884 |
+
)
|
885 |
+
|
886 |
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
887 |
raise ValueError(
|
888 |
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
889 |
)
|
890 |
|
891 |
+
if ip_adapter_image_embeds is not None:
|
892 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
893 |
+
raise ValueError(
|
894 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
895 |
+
)
|
896 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
897 |
+
raise ValueError(
|
898 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
899 |
+
)
|
900 |
+
|
901 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
902 |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
903 |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
904 |
if isinstance(generator, list) and len(generator) != batch_size:
|
|
|
916 |
latents = latents * self.scheduler.init_noise_sigma
|
917 |
return latents
|
918 |
|
919 |
+
def _get_add_time_ids(
|
920 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
921 |
+
):
|
922 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
923 |
|
924 |
+
passed_add_embed_dim = (
|
925 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
926 |
+
)
|
927 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
928 |
|
929 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
930 |
+
raise ValueError(
|
931 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
932 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
933 |
|
934 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
935 |
+
return add_time_ids
|
936 |
+
|
937 |
+
def upcast_vae(self):
|
938 |
+
dtype = self.vae.dtype
|
939 |
+
self.vae.to(dtype=torch.float32)
|
940 |
+
use_torch_2_0_or_xformers = isinstance(
|
941 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
942 |
+
(
|
943 |
+
AttnProcessor2_0,
|
944 |
+
XFormersAttnProcessor,
|
945 |
+
LoRAXFormersAttnProcessor,
|
946 |
+
LoRAAttnProcessor2_0,
|
947 |
+
FusedAttnProcessor2_0,
|
948 |
+
),
|
949 |
+
)
|
950 |
+
# if xformers or torch_2_0 is used attention block does not need
|
951 |
+
# to be in float32 which can save lots of memory
|
952 |
+
if use_torch_2_0_or_xformers:
|
953 |
+
self.vae.post_quant_conv.to(dtype)
|
954 |
+
self.vae.decoder.conv_in.to(dtype)
|
955 |
+
self.vae.decoder.mid_block.to(dtype)
|
956 |
|
957 |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
958 |
+
def get_guidance_scale_embedding(
|
959 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
960 |
+
) -> torch.FloatTensor:
|
961 |
"""
|
962 |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
963 |
+
|
964 |
Args:
|
965 |
+
w (`torch.Tensor`):
|
966 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
967 |
embedding_dim (`int`, *optional*, defaults to 512):
|
968 |
+
Dimension of the embeddings to generate.
|
969 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
970 |
+
Data type of the generated embeddings.
|
971 |
+
|
972 |
Returns:
|
973 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
974 |
"""
|
975 |
assert len(w.shape) == 1
|
976 |
w = w * 1000.0
|
|
|
984 |
emb = torch.nn.functional.pad(emb, (0, 1))
|
985 |
assert emb.shape == (w.shape[0], embedding_dim)
|
986 |
return emb
|
987 |
+
|
988 |
def pred_z0(self, sample, model_output, timestep):
|
989 |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep].to(sample.device)
|
990 |
|
|
|
1006 |
return pred_original_sample
|
1007 |
|
1008 |
def pred_x0(self, latents, noise_pred, t, generator, device, prompt_embeds, output_type):
|
|
|
1009 |
pred_z0 = self.pred_z0(latents, noise_pred, t)
|
1010 |
pred_x0 = self.vae.decode(
|
1011 |
pred_z0 / self.vae.config.scaling_factor,
|
1012 |
return_dict=False,
|
1013 |
generator=generator
|
1014 |
)[0]
|
1015 |
+
#pred_x0, ____ = self.run_safety_checker(pred_x0, device, prompt_embeds.dtype)
|
1016 |
do_denormalize = [True] * pred_x0.shape[0]
|
1017 |
pred_x0 = self.image_processor.postprocess(pred_x0, output_type=output_type, do_denormalize=do_denormalize)
|
1018 |
|
1019 |
return pred_x0
|
1020 |
+
|
1021 |
@property
|
1022 |
def guidance_scale(self):
|
1023 |
return self._guidance_scale
|
|
|
1041 |
def cross_attention_kwargs(self):
|
1042 |
return self._cross_attention_kwargs
|
1043 |
|
1044 |
+
@property
|
1045 |
+
def denoising_end(self):
|
1046 |
+
return self._denoising_end
|
1047 |
+
|
1048 |
@property
|
1049 |
def num_timesteps(self):
|
1050 |
return self._num_timesteps
|
|
|
1052 |
@property
|
1053 |
def interrupt(self):
|
1054 |
return self._interrupt
|
1055 |
+
|
1056 |
@property
|
1057 |
def pag_scale(self):
|
1058 |
return self._pag_scale
|
|
|
1080 |
@property
|
1081 |
def pag_applied_layers_index(self):
|
1082 |
return self._pag_applied_layers_index
|
1083 |
+
|
|
|
1084 |
@torch.no_grad()
|
1085 |
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
1086 |
def __call__(
|
1087 |
self,
|
1088 |
prompt: Union[str, List[str]] = None,
|
1089 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
1090 |
height: Optional[int] = None,
|
1091 |
width: Optional[int] = None,
|
1092 |
num_inference_steps: int = 50,
|
1093 |
timesteps: List[int] = None,
|
1094 |
+
denoising_end: Optional[float] = None,
|
1095 |
+
guidance_scale: float = 5.0,
|
1096 |
pag_scale: float = 0.0,
|
1097 |
pag_adaptive_scaling: float = 0.0,
|
1098 |
pag_drop_rate: float = 0.5,
|
1099 |
+
pag_applied_layers: List[str] = ['mid'], #['down', 'mid', 'up']
|
1100 |
+
pag_applied_layers_index: List[str] = None, #['d4', 'd5', 'm0']
|
1101 |
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1102 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
1103 |
num_images_per_prompt: Optional[int] = 1,
|
1104 |
eta: float = 0.0,
|
1105 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1106 |
latents: Optional[torch.FloatTensor] = None,
|
1107 |
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1108 |
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1109 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1110 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1111 |
ip_adapter_image: Optional[PipelineImageInput] = None,
|
1112 |
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
1113 |
output_type: Optional[str] = "pil",
|
1114 |
return_dict: bool = True,
|
1115 |
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1116 |
guidance_rescale: float = 0.0,
|
1117 |
+
original_size: Optional[Tuple[int, int]] = None,
|
1118 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1119 |
+
target_size: Optional[Tuple[int, int]] = None,
|
1120 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
1121 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
1122 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
1123 |
clip_skip: Optional[int] = None,
|
1124 |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
1125 |
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
1126 |
**kwargs,
|
1127 |
):
|
1128 |
r"""
|
1129 |
+
Function invoked when calling the pipeline for generation.
|
1130 |
+
|
1131 |
Args:
|
1132 |
prompt (`str` or `List[str]`, *optional*):
|
1133 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
1134 |
+
instead.
|
1135 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
1136 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
1137 |
+
used in both text-encoders
|
1138 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1139 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
1140 |
+
Anything below 512 pixels won't work well for
|
1141 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1142 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1143 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
1144 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
1145 |
+
Anything below 512 pixels won't work well for
|
1146 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
1147 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
1148 |
num_inference_steps (`int`, *optional*, defaults to 50):
|
1149 |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
1150 |
expense of slower inference.
|
|
|
1152 |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
1153 |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
1154 |
passed will be used. Must be in descending order.
|
1155 |
+
denoising_end (`float`, *optional*):
|
1156 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
1157 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
1158 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
1159 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
1160 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
1161 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
1162 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
1163 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
1164 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
1165 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
1166 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
1167 |
+
usually at the expense of lower image quality.
|
1168 |
negative_prompt (`str` or `List[str]`, *optional*):
|
1169 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
1170 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
1171 |
+
less than `1`).
|
1172 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
1173 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
1174 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
1175 |
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1176 |
The number of images to generate per prompt.
|
1177 |
eta (`float`, *optional*, defaults to 0.0):
|
1178 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
1179 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
1180 |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1181 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
1182 |
+
to make generation deterministic.
|
1183 |
latents (`torch.FloatTensor`, *optional*):
|
1184 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
1185 |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1186 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
1187 |
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1188 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
1189 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
1190 |
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1191 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1192 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
1193 |
+
argument.
|
1194 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1195 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
1196 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
1197 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1198 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
1199 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
1200 |
+
input argument.
|
1201 |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
1202 |
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
1203 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
1204 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
1205 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
1206 |
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
1207 |
output_type (`str`, *optional*, defaults to `"pil"`):
|
1208 |
+
The output format of the generate image. Choose between
|
1209 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
1210 |
return_dict (`bool`, *optional*, defaults to `True`):
|
1211 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
1212 |
+
of a plain tuple.
|
1213 |
cross_attention_kwargs (`dict`, *optional*):
|
1214 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1215 |
+
`self.processor` in
|
1216 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1217 |
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1218 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1219 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
1220 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
1221 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1222 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1223 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1224 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1225 |
+
explained in section 2.2 of
|
1226 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1227 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1228 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1229 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1230 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1231 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1232 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1233 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1234 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1235 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1236 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1237 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1238 |
+
micro-conditioning as explained in section 2.2 of
|
1239 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1240 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1241 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1242 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1243 |
+
micro-conditioning as explained in section 2.2 of
|
1244 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1245 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1246 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1247 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1248 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1249 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1250 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1251 |
callback_on_step_end (`Callable`, *optional*):
|
1252 |
A function that calls at the end of each denoising steps during the inference. The function is called
|
1253 |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
|
1257 |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1258 |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1259 |
`._callback_tensor_inputs` attribute of your pipeline class.
|
1260 |
+
|
1261 |
Examples:
|
1262 |
+
|
1263 |
Returns:
|
1264 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1265 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1266 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
|
|
|
|
1267 |
"""
|
1268 |
|
1269 |
callback = kwargs.pop("callback", None)
|
|
|
1273 |
deprecate(
|
1274 |
"callback",
|
1275 |
"1.0.0",
|
1276 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1277 |
)
|
1278 |
if callback_steps is not None:
|
1279 |
deprecate(
|
1280 |
"callback_steps",
|
1281 |
"1.0.0",
|
1282 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1283 |
)
|
1284 |
|
1285 |
# 0. Default height and width to unet
|
1286 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1287 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1288 |
+
|
1289 |
+
original_size = original_size or (height, width)
|
1290 |
+
target_size = target_size or (height, width)
|
1291 |
|
1292 |
# 1. Check inputs. Raise error if not correct
|
1293 |
self.check_inputs(
|
1294 |
prompt,
|
1295 |
+
prompt_2,
|
1296 |
height,
|
1297 |
width,
|
1298 |
callback_steps,
|
1299 |
negative_prompt,
|
1300 |
+
negative_prompt_2,
|
1301 |
prompt_embeds,
|
1302 |
negative_prompt_embeds,
|
1303 |
+
pooled_prompt_embeds,
|
1304 |
+
negative_pooled_prompt_embeds,
|
1305 |
ip_adapter_image,
|
1306 |
ip_adapter_image_embeds,
|
1307 |
callback_on_step_end_tensor_inputs,
|
|
|
1311 |
self._guidance_rescale = guidance_rescale
|
1312 |
self._clip_skip = clip_skip
|
1313 |
self._cross_attention_kwargs = cross_attention_kwargs
|
1314 |
+
self._denoising_end = denoising_end
|
1315 |
self._interrupt = False
|
1316 |
+
|
1317 |
self._pag_scale = pag_scale
|
1318 |
self._pag_adaptive_scaling = pag_adaptive_scaling
|
1319 |
self._pag_drop_rate = pag_drop_rate
|
1320 |
self._pag_applied_layers = pag_applied_layers
|
1321 |
self._pag_applied_layers_index = pag_applied_layers_index
|
1322 |
+
|
1323 |
# 2. Define call parameters
|
1324 |
if prompt is not None and isinstance(prompt, str):
|
1325 |
batch_size = 1
|
|
|
1335 |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1336 |
)
|
1337 |
|
1338 |
+
(
|
1339 |
+
prompt_embeds,
|
1340 |
+
negative_prompt_embeds,
|
1341 |
+
pooled_prompt_embeds,
|
1342 |
+
negative_pooled_prompt_embeds,
|
1343 |
+
) = self.encode_prompt(
|
1344 |
+
prompt=prompt,
|
1345 |
+
prompt_2=prompt_2,
|
1346 |
+
device=device,
|
1347 |
+
num_images_per_prompt=num_images_per_prompt,
|
1348 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1349 |
+
negative_prompt=negative_prompt,
|
1350 |
+
negative_prompt_2=negative_prompt_2,
|
1351 |
prompt_embeds=prompt_embeds,
|
1352 |
negative_prompt_embeds=negative_prompt_embeds,
|
1353 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1354 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1355 |
lora_scale=lora_scale,
|
1356 |
clip_skip=self.clip_skip,
|
1357 |
)
|
1358 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1359 |
# 4. Prepare timesteps
|
1360 |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
1361 |
|
|
|
1375 |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1376 |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1377 |
|
1378 |
+
# 7. Prepare added time ids & embeddings
|
1379 |
+
add_text_embeds = pooled_prompt_embeds
|
1380 |
+
if self.text_encoder_2 is None:
|
1381 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1382 |
+
else:
|
1383 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1384 |
+
|
1385 |
+
add_time_ids = self._get_add_time_ids(
|
1386 |
+
original_size,
|
1387 |
+
crops_coords_top_left,
|
1388 |
+
target_size,
|
1389 |
+
dtype=prompt_embeds.dtype,
|
1390 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1391 |
)
|
1392 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1393 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1394 |
+
negative_original_size,
|
1395 |
+
negative_crops_coords_top_left,
|
1396 |
+
negative_target_size,
|
1397 |
+
dtype=prompt_embeds.dtype,
|
1398 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1399 |
+
)
|
1400 |
+
else:
|
1401 |
+
negative_add_time_ids = add_time_ids
|
1402 |
+
|
1403 |
+
#cfg
|
1404 |
+
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
1405 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1406 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1407 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1408 |
+
#pag
|
1409 |
+
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
1410 |
+
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds], dim=0)
|
1411 |
+
add_text_embeds = torch.cat([add_text_embeds, add_text_embeds], dim=0)
|
1412 |
+
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
|
1413 |
+
#both
|
1414 |
+
elif self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
1415 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds, prompt_embeds], dim=0)
|
1416 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds, add_text_embeds], dim=0)
|
1417 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids, add_time_ids], dim=0)
|
1418 |
+
|
1419 |
+
prompt_embeds = prompt_embeds.to(device)
|
1420 |
+
add_text_embeds = add_text_embeds.to(device)
|
1421 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1422 |
+
|
1423 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1424 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1425 |
+
ip_adapter_image,
|
1426 |
+
ip_adapter_image_embeds,
|
1427 |
+
device,
|
1428 |
+
batch_size * num_images_per_prompt,
|
1429 |
+
self.do_classifier_free_guidance,
|
1430 |
+
)
|
1431 |
+
|
1432 |
+
# 8. Denoising loop
|
1433 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1434 |
+
|
1435 |
+
# 8.1 Apply denoising_end
|
1436 |
+
if (
|
1437 |
+
self.denoising_end is not None
|
1438 |
+
and isinstance(self.denoising_end, float)
|
1439 |
+
and self.denoising_end > 0
|
1440 |
+
and self.denoising_end < 1
|
1441 |
+
):
|
1442 |
+
discrete_timestep_cutoff = int(
|
1443 |
+
round(
|
1444 |
+
self.scheduler.config.num_train_timesteps
|
1445 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1446 |
+
)
|
1447 |
+
)
|
1448 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1449 |
+
timesteps = timesteps[:num_inference_steps]
|
1450 |
|
1451 |
+
# 9. Optionally get Guidance Scale Embedding
|
1452 |
timestep_cond = None
|
1453 |
if self.unet.config.time_cond_proj_dim is not None:
|
1454 |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
|
|
1456 |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1457 |
).to(device=device, dtype=latents.dtype)
|
1458 |
|
1459 |
+
# 10. Create down mid and up layer lists
|
1460 |
if self.do_adversarial_guidance:
|
1461 |
down_layers = []
|
1462 |
mid_layers = []
|
|
|
1472 |
up_layers.append(module)
|
1473 |
else:
|
1474 |
raise ValueError(f"Invalid layer type: {layer_type}")
|
1475 |
+
|
|
|
1476 |
self._num_timesteps = len(timesteps)
|
1477 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1478 |
for i, t in enumerate(timesteps):
|
1479 |
if self.interrupt:
|
1480 |
continue
|
1481 |
+
|
1482 |
#cfg
|
1483 |
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
1484 |
latent_model_input = torch.cat([latents] * 2)
|
|
|
1491 |
#no
|
1492 |
else:
|
1493 |
latent_model_input = latents
|
1494 |
+
|
1495 |
# change attention layer in UNet if use PAG
|
1496 |
if self.do_adversarial_guidance:
|
1497 |
|
|
|
1499 |
replace_processor = PAGCFGIdentitySelfAttnProcessor()
|
1500 |
else:
|
1501 |
replace_processor = PAGIdentitySelfAttnProcessor()
|
1502 |
+
|
1503 |
+
if(self.pag_applied_layers_index):
|
1504 |
+
drop_layers = self.pag_applied_layers_index
|
1505 |
+
for drop_layer in drop_layers:
|
1506 |
+
layer_number = int(drop_layer[1:])
|
1507 |
+
try:
|
1508 |
+
if drop_layer[0] == 'd':
|
1509 |
+
down_layers[layer_number].processor = replace_processor
|
1510 |
+
elif drop_layer[0] == 'm':
|
1511 |
+
mid_layers[layer_number].processor = replace_processor
|
1512 |
+
elif drop_layer[0] == 'u':
|
1513 |
+
up_layers[layer_number].processor = replace_processor
|
1514 |
+
else:
|
1515 |
+
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
1516 |
+
except IndexError:
|
1517 |
+
raise ValueError(
|
1518 |
+
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
1519 |
+
)
|
1520 |
+
elif(self.pag_applied_layers):
|
1521 |
+
drop_full_layers = self.pag_applied_layers
|
1522 |
+
for drop_full_layer in drop_full_layers:
|
1523 |
+
try:
|
1524 |
+
if drop_full_layer == "down":
|
1525 |
+
for down_layer in down_layers:
|
1526 |
+
down_layer.processor = replace_processor
|
1527 |
+
elif drop_full_layer == "mid":
|
1528 |
+
for mid_layer in mid_layers:
|
1529 |
+
mid_layer.processor = replace_processor
|
1530 |
+
elif drop_full_layer == "up":
|
1531 |
+
for up_layer in up_layers:
|
1532 |
+
up_layer.processor = replace_processor
|
1533 |
+
else:
|
1534 |
+
raise ValueError(f"Invalid layer type: {drop_full_layer}")
|
1535 |
+
except IndexError:
|
1536 |
+
raise ValueError(
|
1537 |
+
f"Invalid layer index: {drop_full_layer}. Available layers are: down, mid and up. If you need to specify each layer index, you can use `pag_applied_layers_index`"
|
1538 |
+
)
|
1539 |
+
|
1540 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1541 |
+
|
1542 |
# predict the noise residual
|
1543 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1544 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1545 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1546 |
+
|
1547 |
noise_pred = self.unet(
|
1548 |
latent_model_input,
|
1549 |
t,
|
|
|
1553 |
added_cond_kwargs=added_cond_kwargs,
|
1554 |
return_dict=False,
|
1555 |
)[0]
|
1556 |
+
|
1557 |
# perform guidance
|
|
|
|
|
1558 |
if self.do_classifier_free_guidance and not self.do_adversarial_guidance:
|
|
|
1559 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1560 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
1561 |
# pag
|
1562 |
elif not self.do_classifier_free_guidance and self.do_adversarial_guidance:
|
|
|
1563 |
noise_pred_original, noise_pred_perturb = noise_pred.chunk(2)
|
1564 |
|
1565 |
signal_scale = self.pag_scale
|
|
|
1588 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1589 |
|
1590 |
# compute the previous noisy sample x_t -> x_t-1
|
1591 |
+
latents_dtype = latents.dtype
|
1592 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1593 |
+
if latents.dtype != latents_dtype:
|
1594 |
+
if torch.backends.mps.is_available():
|
1595 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1596 |
+
latents = latents.to(latents_dtype)
|
1597 |
|
1598 |
if callback_on_step_end is not None:
|
1599 |
callback_kwargs = {}
|
|
|
1604 |
latents = callback_outputs.pop("latents", latents)
|
1605 |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1606 |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1607 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1608 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1609 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1610 |
+
)
|
1611 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1612 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
1613 |
|
1614 |
# call the callback, if provided
|
1615 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
1618 |
step_idx = i // getattr(self.scheduler, "order", 1)
|
1619 |
callback(step_idx, t, latents)
|
1620 |
|
1621 |
+
if XLA_AVAILABLE:
|
1622 |
+
xm.mark_step()
|
1623 |
+
|
1624 |
if not output_type == "latent":
|
1625 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1626 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1627 |
+
|
1628 |
+
if needs_upcasting:
|
1629 |
+
self.upcast_vae()
|
1630 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1631 |
+
elif latents.dtype != self.vae.dtype:
|
1632 |
+
if torch.backends.mps.is_available():
|
1633 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1634 |
+
self.vae = self.vae.to(latents.dtype)
|
1635 |
+
|
1636 |
+
# unscale/denormalize the latents
|
1637 |
+
# denormalize with the mean and std if available and not None
|
1638 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1639 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1640 |
+
if has_latents_mean and has_latents_std:
|
1641 |
+
latents_mean = (
|
1642 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1643 |
+
)
|
1644 |
+
latents_std = (
|
1645 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1646 |
+
)
|
1647 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1648 |
+
else:
|
1649 |
+
latents = latents / self.vae.config.scaling_factor
|
1650 |
+
|
1651 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1652 |
+
|
1653 |
+
# cast back to fp16 if needed
|
1654 |
+
if needs_upcasting:
|
1655 |
+
self.vae.to(dtype=torch.float16)
|
1656 |
else:
|
1657 |
image = latents
|
|
|
1658 |
|
1659 |
+
if not output_type == "latent":
|
1660 |
+
# apply watermark if available
|
1661 |
+
if self.watermark is not None:
|
1662 |
+
image = self.watermark.apply_watermark(image)
|
1663 |
|
1664 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1665 |
|
1666 |
# Offload all models
|
1667 |
self.maybe_free_model_hooks()
|
1668 |
|
1669 |
if not return_dict:
|
1670 |
+
return (image,)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1671 |
|
1672 |
+
#Change the attention layers back to original ones after PAG was applied
|
1673 |
+
if self.do_adversarial_guidance:
|
1674 |
+
if(self.pag_applied_layers_index):
|
1675 |
+
drop_layers = self.pag_applied_layers_index
|
1676 |
+
for drop_layer in drop_layers:
|
1677 |
+
layer_number = int(drop_layer[1:])
|
1678 |
+
try:
|
1679 |
+
if drop_layer[0] == 'd':
|
1680 |
+
down_layers[layer_number].processor = AttnProcessor2_0()
|
1681 |
+
elif drop_layer[0] == 'm':
|
1682 |
+
mid_layers[layer_number].processor = AttnProcessor2_0()
|
1683 |
+
elif drop_layer[0] == 'u':
|
1684 |
+
up_layers[layer_number].processor = AttnProcessor2_0()
|
1685 |
+
else:
|
1686 |
+
raise ValueError(f"Invalid layer type: {drop_layer[0]}")
|
1687 |
+
except IndexError:
|
1688 |
+
raise ValueError(
|
1689 |
+
f"Invalid layer index: {drop_layer}. Available layers: {len(down_layers)} down layers, {len(mid_layers)} mid layers, {len(up_layers)} up layers."
|
1690 |
+
)
|
1691 |
+
elif(self.pag_applied_layers):
|
1692 |
+
drop_full_layers = self.pag_applied_layers
|
1693 |
+
for drop_full_layer in drop_full_layers:
|
1694 |
+
try:
|
1695 |
+
if drop_full_layer == "down":
|
1696 |
+
for down_layer in down_layers:
|
1697 |
+
down_layer.processor = AttnProcessor2_0()
|
1698 |
+
elif drop_full_layer == "mid":
|
1699 |
+
for mid_layer in mid_layers:
|
1700 |
+
mid_layer.processor = AttnProcessor2_0()
|
1701 |
+
elif drop_full_layer == "up":
|
1702 |
+
for up_layer in up_layers:
|
1703 |
+
up_layer.processor = AttnProcessor2_0()
|
1704 |
+
else:
|
1705 |
+
raise ValueError(f"Invalid layer type: {drop_full_layer}")
|
1706 |
+
except IndexError:
|
1707 |
+
raise ValueError(
|
1708 |
+
f"Invalid layer index: {drop_full_layer}. Available layers are: down, mid and up. If you need to specify each layer index, you can use `pag_applied_layers_index`"
|
1709 |
+
)
|
1710 |
+
return StableDiffusionXLPipelineOutput(images=image)
|