Commit
•
0f23f59
0
Parent(s):
Duplicate from microsoft/Florence-2-large
Browse filesCo-authored-by: Bin Xiao <[email protected]>
- .gitattributes +36 -0
- CODE_OF_CONDUCT.md +9 -0
- LICENSE +21 -0
- README.md +262 -0
- SECURITY.md +41 -0
- SUPPORT.md +25 -0
- config.json +85 -0
- configuration_florence2.py +340 -0
- generation_config.json +4 -0
- modeling_florence2.py +0 -0
- preprocessor_config.json +39 -0
- processing_florence2.py +1088 -0
- pytorch_model.bin +3 -0
- sample_inference.ipynb +0 -0
- tokenizer.json +0 -0
- tokenizer_config.json +4 -0
- vocab.json +0 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*bin filter=lfs diff=lfs merge=lfs -text
|
CODE_OF_CONDUCT.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Microsoft Open Source Code of Conduct
|
2 |
+
|
3 |
+
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
4 |
+
|
5 |
+
Resources:
|
6 |
+
|
7 |
+
- [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/)
|
8 |
+
- [Microsoft Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/)
|
9 |
+
- Contact [[email protected]](mailto:[email protected]) with questions or concerns
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) Microsoft Corporation.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE
|
README.md
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
license_link: https://huggingface.co/microsoft/Florence-2-large/resolve/main/LICENSE
|
4 |
+
pipeline_tag: image-text-to-text
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
---
|
8 |
+
|
9 |
+
# Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks
|
10 |
+
|
11 |
+
## Model Summary
|
12 |
+
|
13 |
+
This Hub repository contains a HuggingFace's `transformers` implementation of Florence-2 model from Microsoft.
|
14 |
+
|
15 |
+
Florence-2 is an advanced vision foundation model that uses a prompt-based approach to handle a wide range of vision and vision-language tasks. Florence-2 can interpret simple text prompts to perform tasks like captioning, object detection, and segmentation. It leverages our FLD-5B dataset, containing 5.4 billion annotations across 126 million images, to master multi-task learning. The model's sequence-to-sequence architecture enables it to excel in both zero-shot and fine-tuned settings, proving to be a competitive vision foundation model.
|
16 |
+
|
17 |
+
Resources and Technical Documentation:
|
18 |
+
+ [Florence-2 technical report](https://arxiv.org/abs/2311.06242).
|
19 |
+
+ [Jupyter Notebook for inference and visualization of Florence-2-large](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
|
20 |
+
|
21 |
+
| Model | Model size | Model Description |
|
22 |
+
| ------- | ------------- | ------------- |
|
23 |
+
| Florence-2-base[[HF]](https://huggingface.co/microsoft/Florence-2-base) | 0.23B | Pretrained model with FLD-5B
|
24 |
+
| Florence-2-large[[HF]](https://huggingface.co/microsoft/Florence-2-large) | 0.77B | Pretrained model with FLD-5B
|
25 |
+
| Florence-2-base-ft[[HF]](https://huggingface.co/microsoft/Florence-2-base-ft) | 0.23B | Finetuned model on a colletion of downstream tasks
|
26 |
+
| Florence-2-large-ft[[HF]](https://huggingface.co/microsoft/Florence-2-large-ft) | 0.77B | Finetuned model on a colletion of downstream tasks
|
27 |
+
|
28 |
+
## How to Get Started with the Model
|
29 |
+
|
30 |
+
Use the code below to get started with the model. All models are trained with float16.
|
31 |
+
|
32 |
+
```python
|
33 |
+
import requests
|
34 |
+
|
35 |
+
import torch
|
36 |
+
from PIL import Image
|
37 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
38 |
+
|
39 |
+
|
40 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
41 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
42 |
+
|
43 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
|
44 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
45 |
+
|
46 |
+
prompt = "<OD>"
|
47 |
+
|
48 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
49 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
50 |
+
|
51 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
52 |
+
|
53 |
+
generated_ids = model.generate(
|
54 |
+
input_ids=inputs["input_ids"],
|
55 |
+
pixel_values=inputs["pixel_values"],
|
56 |
+
max_new_tokens=1024,
|
57 |
+
num_beams=3,
|
58 |
+
do_sample=False
|
59 |
+
)
|
60 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
61 |
+
|
62 |
+
parsed_answer = processor.post_process_generation(generated_text, task="<OD>", image_size=(image.width, image.height))
|
63 |
+
|
64 |
+
print(parsed_answer)
|
65 |
+
|
66 |
+
```
|
67 |
+
|
68 |
+
|
69 |
+
## Tasks
|
70 |
+
|
71 |
+
This model is capable of performing different tasks through changing the prompts.
|
72 |
+
|
73 |
+
First, let's define a function to run a prompt.
|
74 |
+
|
75 |
+
<details>
|
76 |
+
<summary> Click to expand </summary>
|
77 |
+
|
78 |
+
```python
|
79 |
+
import requests
|
80 |
+
|
81 |
+
import torch
|
82 |
+
from PIL import Image
|
83 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
84 |
+
|
85 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
86 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
87 |
+
|
88 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large", torch_dtype=torch_dtype, trust_remote_code=True).to(device)
|
89 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large", trust_remote_code=True)
|
90 |
+
|
91 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
92 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
93 |
+
|
94 |
+
def run_example(task_prompt, text_input=None):
|
95 |
+
if text_input is None:
|
96 |
+
prompt = task_prompt
|
97 |
+
else:
|
98 |
+
prompt = task_prompt + text_input
|
99 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
100 |
+
generated_ids = model.generate(
|
101 |
+
input_ids=inputs["input_ids"],
|
102 |
+
pixel_values=inputs["pixel_values"],
|
103 |
+
max_new_tokens=1024,
|
104 |
+
num_beams=3
|
105 |
+
)
|
106 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
107 |
+
|
108 |
+
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height))
|
109 |
+
|
110 |
+
print(parsed_answer)
|
111 |
+
```
|
112 |
+
</details>
|
113 |
+
|
114 |
+
Here are the tasks `Florence-2` could perform:
|
115 |
+
|
116 |
+
<details>
|
117 |
+
<summary> Click to expand </summary>
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
### Caption
|
122 |
+
```python
|
123 |
+
prompt = "<CAPTION>"
|
124 |
+
run_example(prompt)
|
125 |
+
```
|
126 |
+
|
127 |
+
### Detailed Caption
|
128 |
+
```python
|
129 |
+
prompt = "<DETAILED_CAPTION>"
|
130 |
+
run_example(prompt)
|
131 |
+
```
|
132 |
+
|
133 |
+
### More Detailed Caption
|
134 |
+
```python
|
135 |
+
prompt = "<MORE_DETAILED_CAPTION>"
|
136 |
+
run_example(prompt)
|
137 |
+
```
|
138 |
+
|
139 |
+
### Caption to Phrase Grounding
|
140 |
+
caption to phrase grounding task requires additional text input, i.e. caption.
|
141 |
+
|
142 |
+
Caption to phrase grounding results format:
|
143 |
+
{'\<CAPTION_TO_PHRASE_GROUNDING>': {'bboxes': [[x1, y1, x2, y2], ...], 'labels': ['', '', ...]}}
|
144 |
+
```python
|
145 |
+
task_prompt = "<CAPTION_TO_PHRASE_GROUNDING>"
|
146 |
+
results = run_example(task_prompt, text_input="A green car parked in front of a yellow building.")
|
147 |
+
```
|
148 |
+
|
149 |
+
### Object Detection
|
150 |
+
|
151 |
+
OD results format:
|
152 |
+
{'\<OD>': {'bboxes': [[x1, y1, x2, y2], ...],
|
153 |
+
'labels': ['label1', 'label2', ...]} }
|
154 |
+
|
155 |
+
```python
|
156 |
+
prompt = "<OD>"
|
157 |
+
run_example(prompt)
|
158 |
+
```
|
159 |
+
|
160 |
+
### Dense Region Caption
|
161 |
+
Dense region caption results format:
|
162 |
+
{'\<DENSE_REGION_CAPTION>' : {'bboxes': [[x1, y1, x2, y2], ...],
|
163 |
+
'labels': ['label1', 'label2', ...]} }
|
164 |
+
```python
|
165 |
+
prompt = "<DENSE_REGION_CAPTION>"
|
166 |
+
run_example(prompt)
|
167 |
+
```
|
168 |
+
|
169 |
+
### Region proposal
|
170 |
+
Dense region caption results format:
|
171 |
+
{'\<REGION_PROPOSAL>': {'bboxes': [[x1, y1, x2, y2], ...],
|
172 |
+
'labels': ['', '', ...]}}
|
173 |
+
```python
|
174 |
+
prompt = "<REGION_PROPOSAL>"
|
175 |
+
run_example(prompt)
|
176 |
+
```
|
177 |
+
|
178 |
+
### OCR
|
179 |
+
|
180 |
+
```python
|
181 |
+
prompt = "<OCR>"
|
182 |
+
run_example(prompt)
|
183 |
+
```
|
184 |
+
|
185 |
+
### OCR with Region
|
186 |
+
OCR with region output format:
|
187 |
+
{'\<OCR_WITH_REGION>': {'quad_boxes': [[x1, y1, x2, y2, x3, y3, x4, y4], ...], 'labels': ['text1', ...]}}
|
188 |
+
```python
|
189 |
+
prompt = "<OCR_WITH_REGION>"
|
190 |
+
run_example(prompt)
|
191 |
+
```
|
192 |
+
|
193 |
+
for More detailed examples, please refer to [notebook](https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb)
|
194 |
+
</details>
|
195 |
+
|
196 |
+
# Benchmarks
|
197 |
+
|
198 |
+
## Florence-2 Zero-shot performance
|
199 |
+
|
200 |
+
The following table presents the zero-shot performance of generalist vision foundation models on image captioning and object detection evaluation tasks. These models have not been exposed to the training data of the evaluation tasks during their training phase.
|
201 |
+
|
202 |
+
| Method | #params | COCO Cap. test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | COCO Det. val2017 mAP |
|
203 |
+
|--------|---------|----------------------|------------------|--------------------|-----------------------|
|
204 |
+
| Flamingo | 80B | 84.3 | - | - | - |
|
205 |
+
| Florence-2-base| 0.23B | 133.0 | 118.7 | 70.1 | 34.7 |
|
206 |
+
| Florence-2-large| 0.77B | 135.6 | 120.8 | 72.8 | 37.5 |
|
207 |
+
|
208 |
+
|
209 |
+
The following table continues the comparison with performance on other vision-language evaluation tasks.
|
210 |
+
|
211 |
+
| Method | Flickr30k test R@1 | Refcoco val Accuracy | Refcoco test-A Accuracy | Refcoco test-B Accuracy | Refcoco+ val Accuracy | Refcoco+ test-A Accuracy | Refcoco+ test-B Accuracy | Refcocog val Accuracy | Refcocog test Accuracy | Refcoco RES val mIoU |
|
212 |
+
|--------|----------------------|----------------------|-------------------------|-------------------------|-----------------------|--------------------------|--------------------------|-----------------------|------------------------|----------------------|
|
213 |
+
| Kosmos-2 | 78.7 | 52.3 | 57.4 | 47.3 | 45.5 | 50.7 | 42.2 | 60.6 | 61.7 | - |
|
214 |
+
| Florence-2-base | 83.6 | 53.9 | 58.4 | 49.7 | 51.5 | 56.4 | 47.9 | 66.3 | 65.1 | 34.6 |
|
215 |
+
| Florence-2-large | 84.4 | 56.3 | 61.6 | 51.4 | 53.6 | 57.9 | 49.9 | 68.0 | 67.0 | 35.8 |
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
## Florence-2 finetuned performance
|
220 |
+
|
221 |
+
We finetune Florence-2 models with a collection of downstream tasks, resulting two generalist models *Florence-2-base-ft* and *Florence-2-large-ft* that can conduct a wide range of downstream tasks.
|
222 |
+
|
223 |
+
The table below compares the performance of specialist and generalist models on various captioning and Visual Question Answering (VQA) tasks. Specialist models are fine-tuned specifically for each task, whereas generalist models are fine-tuned in a task-agnostic manner across all tasks. The symbol "▲" indicates the usage of external OCR as input.
|
224 |
+
|
225 |
+
| Method | # Params | COCO Caption Karpathy test CIDEr | NoCaps val CIDEr | TextCaps val CIDEr | VQAv2 test-dev Acc | TextVQA test-dev Acc | VizWiz VQA test-dev Acc |
|
226 |
+
|----------------|----------|-----------------------------------|------------------|--------------------|--------------------|----------------------|-------------------------|
|
227 |
+
| **Specialist Models** | | | | | | | |
|
228 |
+
| CoCa | 2.1B | 143.6 | 122.4 | - | 82.3 | - | - |
|
229 |
+
| BLIP-2 | 7.8B | 144.5 | 121.6 | - | 82.2 | - | - |
|
230 |
+
| GIT2 | 5.1B | 145.0 | 126.9 | 148.6 | 81.7 | 67.3 | 71.0 |
|
231 |
+
| Flamingo | 80B | 138.1 | - | - | 82.0 | 54.1 | 65.7 |
|
232 |
+
| PaLI | 17B | 149.1 | 127.0 | 160.0▲ | 84.3 | 58.8 / 73.1▲ | 71.6 / 74.4▲ |
|
233 |
+
| PaLI-X | 55B | 149.2 | 126.3 | 147.0 / 163.7▲ | 86.0 | 71.4 / 80.8▲ | 70.9 / 74.6▲ |
|
234 |
+
| **Generalist Models** | | | | | | | |
|
235 |
+
| Unified-IO | 2.9B | - | 100.0 | - | 77.9 | - | 57.4 |
|
236 |
+
| Florence-2-base-ft | 0.23B | 140.0 | 116.7 | 143.9 | 79.7 | 63.6 | 63.6 |
|
237 |
+
| Florence-2-large-ft | 0.77B | 143.3 | 124.9 | 151.1 | 81.7 | 73.5 | 72.6 |
|
238 |
+
|
239 |
+
|
240 |
+
| Method | # Params | COCO Det. val2017 mAP | Flickr30k test R@1 | RefCOCO val Accuracy | RefCOCO test-A Accuracy | RefCOCO test-B Accuracy | RefCOCO+ val Accuracy | RefCOCO+ test-A Accuracy | RefCOCO+ test-B Accuracy | RefCOCOg val Accuracy | RefCOCOg test Accuracy | RefCOCO RES val mIoU |
|
241 |
+
|----------------------|----------|-----------------------|--------------------|----------------------|-------------------------|-------------------------|------------------------|---------------------------|---------------------------|------------------------|-----------------------|------------------------|
|
242 |
+
| **Specialist Models** | | | | | | | | | | | | |
|
243 |
+
| SeqTR | - | - | - | 83.7 | 86.5 | 81.2 | 71.5 | 76.3 | 64.9 | 74.9 | 74.2 | - |
|
244 |
+
| PolyFormer | - | - | - | 90.4 | 92.9 | 87.2 | 85.0 | 89.8 | 78.0 | 85.8 | 85.9 | 76.9 |
|
245 |
+
| UNINEXT | 0.74B | 60.6 | - | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 | - |
|
246 |
+
| Ferret | 13B | - | - | 89.5 | 92.4 | 84.4 | 82.8 | 88.1 | 75.2 | 85.8 | 86.3 | - |
|
247 |
+
| **Generalist Models** | | | | | | | | | | | | |
|
248 |
+
| UniTAB | - | - | - | 88.6 | 91.1 | 83.8 | 81.0 | 85.4 | 71.6 | 84.6 | 84.7 | - |
|
249 |
+
| Florence-2-base-ft | 0.23B | 41.4 | 84.0 | 92.6 | 94.8 | 91.5 | 86.8 | 91.7 | 82.2 | 89.8 | 82.2 | 78.0 |
|
250 |
+
| Florence-2-large-ft| 0.77B | 43.4 | 85.2 | 93.4 | 95.3 | 92.0 | 88.3 | 92.9 | 83.6 | 91.2 | 91.7 | 80.5 |
|
251 |
+
|
252 |
+
|
253 |
+
## BibTex and citation info
|
254 |
+
|
255 |
+
```
|
256 |
+
@article{xiao2023florence,
|
257 |
+
title={Florence-2: Advancing a unified representation for a variety of vision tasks},
|
258 |
+
author={Xiao, Bin and Wu, Haiping and Xu, Weijian and Dai, Xiyang and Hu, Houdong and Lu, Yumao and Zeng, Michael and Liu, Ce and Yuan, Lu},
|
259 |
+
journal={arXiv preprint arXiv:2311.06242},
|
260 |
+
year={2023}
|
261 |
+
}
|
262 |
+
```
|
SECURITY.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- BEGIN MICROSOFT SECURITY.MD V0.0.9 BLOCK -->
|
2 |
+
|
3 |
+
## Security
|
4 |
+
|
5 |
+
Microsoft takes the security of our software products and services seriously, which includes all source code repositories managed through our GitHub organizations, which include [Microsoft](https://github.com/Microsoft), [Azure](https://github.com/Azure), [DotNet](https://github.com/dotnet), [AspNet](https://github.com/aspnet) and [Xamarin](https://github.com/xamarin).
|
6 |
+
|
7 |
+
If you believe you have found a security vulnerability in any Microsoft-owned repository that meets [Microsoft's definition of a security vulnerability](https://aka.ms/security.md/definition), please report it to us as described below.
|
8 |
+
|
9 |
+
## Reporting Security Issues
|
10 |
+
|
11 |
+
**Please do not report security vulnerabilities through public GitHub issues.**
|
12 |
+
|
13 |
+
Instead, please report them to the Microsoft Security Response Center (MSRC) at [https://msrc.microsoft.com/create-report](https://aka.ms/security.md/msrc/create-report).
|
14 |
+
|
15 |
+
If you prefer to submit without logging in, send email to [[email protected]](mailto:[email protected]). If possible, encrypt your message with our PGP key; please download it from the [Microsoft Security Response Center PGP Key page](https://aka.ms/security.md/msrc/pgp).
|
16 |
+
|
17 |
+
You should receive a response within 24 hours. If for some reason you do not, please follow up via email to ensure we received your original message. Additional information can be found at [microsoft.com/msrc](https://www.microsoft.com/msrc).
|
18 |
+
|
19 |
+
Please include the requested information listed below (as much as you can provide) to help us better understand the nature and scope of the possible issue:
|
20 |
+
|
21 |
+
* Type of issue (e.g. buffer overflow, SQL injection, cross-site scripting, etc.)
|
22 |
+
* Full paths of source file(s) related to the manifestation of the issue
|
23 |
+
* The location of the affected source code (tag/branch/commit or direct URL)
|
24 |
+
* Any special configuration required to reproduce the issue
|
25 |
+
* Step-by-step instructions to reproduce the issue
|
26 |
+
* Proof-of-concept or exploit code (if possible)
|
27 |
+
* Impact of the issue, including how an attacker might exploit the issue
|
28 |
+
|
29 |
+
This information will help us triage your report more quickly.
|
30 |
+
|
31 |
+
If you are reporting for a bug bounty, more complete reports can contribute to a higher bounty award. Please visit our [Microsoft Bug Bounty Program](https://aka.ms/security.md/msrc/bounty) page for more details about our active programs.
|
32 |
+
|
33 |
+
## Preferred Languages
|
34 |
+
|
35 |
+
We prefer all communications to be in English.
|
36 |
+
|
37 |
+
## Policy
|
38 |
+
|
39 |
+
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://aka.ms/security.md/cvd).
|
40 |
+
|
41 |
+
<!-- END MICROSOFT SECURITY.MD BLOCK -->
|
SUPPORT.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: The maintainer of this repo has not yet edited this file
|
2 |
+
|
3 |
+
**REPO OWNER**: Do you want Customer Service & Support (CSS) support for this product/project?
|
4 |
+
|
5 |
+
- **No CSS support:** Fill out this template with information about how to file issues and get help.
|
6 |
+
- **Yes CSS support:** Fill out an intake form at [aka.ms/onboardsupport](https://aka.ms/onboardsupport). CSS will work with/help you to determine next steps.
|
7 |
+
- **Not sure?** Fill out an intake as though the answer were "Yes". CSS will help you decide.
|
8 |
+
|
9 |
+
*Then remove this first heading from this SUPPORT.MD file before publishing your repo.*
|
10 |
+
|
11 |
+
# Support
|
12 |
+
|
13 |
+
## How to file issues and get help
|
14 |
+
|
15 |
+
This project uses GitHub Issues to track bugs and feature requests. Please search the existing
|
16 |
+
issues before filing new issues to avoid duplicates. For new issues, file your bug or
|
17 |
+
feature request as a new Issue.
|
18 |
+
|
19 |
+
For help and questions about using this project, please **REPO MAINTAINER: INSERT INSTRUCTIONS HERE
|
20 |
+
FOR HOW TO ENGAGE REPO OWNERS OR COMMUNITY FOR HELP. COULD BE A STACK OVERFLOW TAG OR OTHER
|
21 |
+
CHANNEL. WHERE WILL YOU HELP PEOPLE?**.
|
22 |
+
|
23 |
+
## Microsoft Support Policy
|
24 |
+
|
25 |
+
Support for this **PROJECT or PRODUCT** is limited to the resources listed above.
|
config.json
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "florence2",
|
3 |
+
"architectures": [
|
4 |
+
"Florence2ForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_florence2.Florence2Config",
|
8 |
+
"AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
|
9 |
+
},
|
10 |
+
"bos_token_id": 0,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"ignore_index": -100,
|
13 |
+
"model_type": "florence2",
|
14 |
+
"pad_token_id": 1,
|
15 |
+
"projection_dim": 1024,
|
16 |
+
"text_config": {
|
17 |
+
"vocab_size": 51289,
|
18 |
+
"activation_dropout": 0.1,
|
19 |
+
"activation_function": "gelu",
|
20 |
+
"add_bias_logits": false,
|
21 |
+
"add_final_layer_norm": false,
|
22 |
+
"attention_dropout": 0.1,
|
23 |
+
"bos_token_id": 0,
|
24 |
+
"classif_dropout": 0.1,
|
25 |
+
"classifier_dropout": 0.0,
|
26 |
+
"d_model": 1024,
|
27 |
+
"decoder_attention_heads": 16,
|
28 |
+
"decoder_ffn_dim": 4096,
|
29 |
+
"decoder_layerdrop": 0.0,
|
30 |
+
"decoder_layers": 12,
|
31 |
+
"decoder_start_token_id": 2,
|
32 |
+
"dropout": 0.1,
|
33 |
+
"early_stopping": true,
|
34 |
+
"encoder_attention_heads": 16,
|
35 |
+
"encoder_ffn_dim": 4096,
|
36 |
+
"encoder_layerdrop": 0.0,
|
37 |
+
"encoder_layers": 12,
|
38 |
+
"eos_token_id": 2,
|
39 |
+
"forced_eos_token_id": 2,
|
40 |
+
"forced_bos_token_id": 0,
|
41 |
+
"gradient_checkpointing": false,
|
42 |
+
"init_std": 0.02,
|
43 |
+
"is_encoder_decoder": true,
|
44 |
+
"label2id": {
|
45 |
+
"LABEL_0": 0,
|
46 |
+
"LABEL_1": 1,
|
47 |
+
"LABEL_2": 2
|
48 |
+
},
|
49 |
+
"max_position_embeddings": 1024,
|
50 |
+
"no_repeat_ngram_size": 3,
|
51 |
+
"normalize_before": false,
|
52 |
+
"num_hidden_layers": 12,
|
53 |
+
"pad_token_id": 1,
|
54 |
+
"scale_embedding": false,
|
55 |
+
"num_beams": 3
|
56 |
+
},
|
57 |
+
"vision_config": {
|
58 |
+
"model_type": "davit",
|
59 |
+
"drop_path_rate": 0.1,
|
60 |
+
"patch_size": [7, 3, 3, 3],
|
61 |
+
"patch_stride": [4, 2, 2, 2],
|
62 |
+
"patch_padding": [3, 1, 1, 1],
|
63 |
+
"patch_prenorm": [false, true, true, true],
|
64 |
+
"enable_checkpoint": false,
|
65 |
+
"dim_embed": [256, 512, 1024, 2048],
|
66 |
+
"num_heads": [8, 16, 32, 64],
|
67 |
+
"num_groups": [8, 16, 32, 64],
|
68 |
+
"depths": [1, 1, 9, 1],
|
69 |
+
"window_size": 12,
|
70 |
+
"projection_dim": 1024,
|
71 |
+
"visual_temporal_embedding": {
|
72 |
+
"type": "COSINE",
|
73 |
+
"max_temporal_embeddings": 100
|
74 |
+
},
|
75 |
+
"image_pos_embed": {
|
76 |
+
"type": "learned_abs_2d",
|
77 |
+
"max_pos_embeddings": 50
|
78 |
+
},
|
79 |
+
"image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
|
80 |
+
},
|
81 |
+
"vocab_size": 51289,
|
82 |
+
"torch_dtype": "float16",
|
83 |
+
"transformers_version": "4.41.0.dev0",
|
84 |
+
"is_encoder_decoder": true
|
85 |
+
}
|
configuration_florence2.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import warnings
|
15 |
+
""" Florence-2 configuration"""
|
16 |
+
|
17 |
+
from typing import Optional
|
18 |
+
|
19 |
+
from transformers import AutoConfig
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
class Florence2VisionConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
|
28 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
|
30 |
+
|
31 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
32 |
+
documentation from [`PretrainedConfig`] for more information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
36 |
+
The dropout rate of the drop path layer.
|
37 |
+
patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
|
38 |
+
The patch size of the image.
|
39 |
+
patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
|
40 |
+
The patch stride of the image.
|
41 |
+
patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
|
42 |
+
The patch padding of the image.
|
43 |
+
patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
|
44 |
+
Whether to apply layer normalization before the patch embedding layer.
|
45 |
+
enable_checkpoint (`bool`, *optional*, defaults to False):
|
46 |
+
Whether to enable checkpointing.
|
47 |
+
dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
|
48 |
+
The dimension of the embedding layer.
|
49 |
+
num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
50 |
+
The number of attention heads.
|
51 |
+
num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
|
52 |
+
The number of groups.
|
53 |
+
depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
|
54 |
+
The depth of the model.
|
55 |
+
window_size (`int`, *optional*, defaults to 12):
|
56 |
+
The window size of the model.
|
57 |
+
projection_dim (`int`, *optional*, defaults to 1024):
|
58 |
+
The dimension of the projection layer.
|
59 |
+
visual_temporal_embedding (`dict`, *optional*):
|
60 |
+
The configuration of the visual temporal embedding.
|
61 |
+
image_pos_embed (`dict`, *optional*):
|
62 |
+
The configuration of the image position embedding.
|
63 |
+
image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
|
64 |
+
The source of the image feature.
|
65 |
+
Example:
|
66 |
+
|
67 |
+
```python
|
68 |
+
>>> from transformers import Florence2VisionConfig, Florence2VisionModel
|
69 |
+
|
70 |
+
>>> # Initializing a Florence2 Vision style configuration
|
71 |
+
>>> configuration = Florence2VisionConfig()
|
72 |
+
|
73 |
+
>>> # Initializing a model (with random weights)
|
74 |
+
>>> model = Florence2VisionModel(configuration)
|
75 |
+
|
76 |
+
>>> # Accessing the model configuration
|
77 |
+
>>> configuration = model.config
|
78 |
+
```"""
|
79 |
+
|
80 |
+
model_type = "florence2_vision"
|
81 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
drop_path_rate=0.1,
|
86 |
+
patch_size=[7, 3, 3, 3],
|
87 |
+
patch_stride=[4, 2, 2, 2],
|
88 |
+
patch_padding=[3, 1, 1, 1],
|
89 |
+
patch_prenorm=[False, True, True, True],
|
90 |
+
enable_checkpoint=False,
|
91 |
+
dim_embed=[256, 512, 1024, 2048],
|
92 |
+
num_heads=[8, 16, 32, 64],
|
93 |
+
num_groups=[8, 16, 32, 64],
|
94 |
+
depths=[1, 1, 9, 1],
|
95 |
+
window_size=12,
|
96 |
+
projection_dim=1024,
|
97 |
+
visual_temporal_embedding=None,
|
98 |
+
image_pos_embed=None,
|
99 |
+
image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
self.drop_path_rate = drop_path_rate
|
103 |
+
self.patch_size = patch_size
|
104 |
+
self.patch_stride = patch_stride
|
105 |
+
self.patch_padding = patch_padding
|
106 |
+
self.patch_prenorm = patch_prenorm
|
107 |
+
self.enable_checkpoint = enable_checkpoint
|
108 |
+
self.dim_embed = dim_embed
|
109 |
+
self.num_heads = num_heads
|
110 |
+
self.num_groups = num_groups
|
111 |
+
self.depths = depths
|
112 |
+
self.window_size = window_size
|
113 |
+
self.projection_dim = projection_dim
|
114 |
+
self.visual_temporal_embedding = visual_temporal_embedding
|
115 |
+
self.image_pos_embed = image_pos_embed
|
116 |
+
self.image_feature_source = image_feature_source
|
117 |
+
|
118 |
+
super().__init__(**kwargs)
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
class Florence2LanguageConfig(PretrainedConfig):
|
123 |
+
r"""
|
124 |
+
This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
|
125 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
126 |
+
defaults will yield a similar configuration to that of the BART
|
127 |
+
[facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
|
128 |
+
|
129 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
130 |
+
documentation from [`PretrainedConfig`] for more information.
|
131 |
+
|
132 |
+
|
133 |
+
Args:
|
134 |
+
vocab_size (`int`, *optional*, defaults to 51289):
|
135 |
+
Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
|
136 |
+
`inputs_ids` passed when calling [`Florence2LanguageModel`].
|
137 |
+
d_model (`int`, *optional*, defaults to 1024):
|
138 |
+
Dimensionality of the layers and the pooler layer.
|
139 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
140 |
+
Number of encoder layers.
|
141 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
142 |
+
Number of decoder layers.
|
143 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
144 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
145 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
146 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
147 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
148 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
149 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
150 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
151 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
152 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
153 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
154 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
155 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
156 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
157 |
+
The dropout ratio for the attention probabilities.
|
158 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
159 |
+
The dropout ratio for activations inside the fully connected layer.
|
160 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
161 |
+
The dropout ratio for classifier.
|
162 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
163 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
164 |
+
just in case (e.g., 512 or 1024 or 2048).
|
165 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
166 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
167 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
168 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
169 |
+
for more details.
|
170 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
171 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
172 |
+
for more details.
|
173 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
174 |
+
Scale embeddings by diving by sqrt(d_model).
|
175 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
176 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
177 |
+
num_labels (`int`, *optional*, defaults to 3):
|
178 |
+
The number of labels to use in [`Florence2LanguageForSequenceClassification`].
|
179 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
180 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
181 |
+
`eos_token_id`.
|
182 |
+
|
183 |
+
Example:
|
184 |
+
|
185 |
+
```python
|
186 |
+
>>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
|
187 |
+
|
188 |
+
>>> # Initializing a Florence2 Language style configuration
|
189 |
+
>>> configuration = Florence2LanguageConfig()
|
190 |
+
|
191 |
+
>>> # Initializing a model (with random weights)
|
192 |
+
>>> model = Florence2LangaugeModel(configuration)
|
193 |
+
|
194 |
+
>>> # Accessing the model configuration
|
195 |
+
>>> configuration = model.config
|
196 |
+
```"""
|
197 |
+
|
198 |
+
model_type = "florence2_language"
|
199 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
200 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
201 |
+
|
202 |
+
def __init__(
|
203 |
+
self,
|
204 |
+
vocab_size=51289,
|
205 |
+
max_position_embeddings=1024,
|
206 |
+
encoder_layers=12,
|
207 |
+
encoder_ffn_dim=4096,
|
208 |
+
encoder_attention_heads=16,
|
209 |
+
decoder_layers=12,
|
210 |
+
decoder_ffn_dim=4096,
|
211 |
+
decoder_attention_heads=16,
|
212 |
+
encoder_layerdrop=0.0,
|
213 |
+
decoder_layerdrop=0.0,
|
214 |
+
activation_function="gelu",
|
215 |
+
d_model=1024,
|
216 |
+
dropout=0.1,
|
217 |
+
attention_dropout=0.0,
|
218 |
+
activation_dropout=0.0,
|
219 |
+
init_std=0.02,
|
220 |
+
classifier_dropout=0.0,
|
221 |
+
scale_embedding=False,
|
222 |
+
use_cache=True,
|
223 |
+
num_labels=3,
|
224 |
+
pad_token_id=1,
|
225 |
+
bos_token_id=0,
|
226 |
+
eos_token_id=2,
|
227 |
+
is_encoder_decoder=True,
|
228 |
+
decoder_start_token_id=2,
|
229 |
+
forced_eos_token_id=2,
|
230 |
+
**kwargs,
|
231 |
+
):
|
232 |
+
self.vocab_size = vocab_size
|
233 |
+
self.max_position_embeddings = max_position_embeddings
|
234 |
+
self.d_model = d_model
|
235 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
236 |
+
self.encoder_layers = encoder_layers
|
237 |
+
self.encoder_attention_heads = encoder_attention_heads
|
238 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
239 |
+
self.decoder_layers = decoder_layers
|
240 |
+
self.decoder_attention_heads = decoder_attention_heads
|
241 |
+
self.dropout = dropout
|
242 |
+
self.attention_dropout = attention_dropout
|
243 |
+
self.activation_dropout = activation_dropout
|
244 |
+
self.activation_function = activation_function
|
245 |
+
self.init_std = init_std
|
246 |
+
self.encoder_layerdrop = encoder_layerdrop
|
247 |
+
self.decoder_layerdrop = decoder_layerdrop
|
248 |
+
self.classifier_dropout = classifier_dropout
|
249 |
+
self.use_cache = use_cache
|
250 |
+
self.num_hidden_layers = encoder_layers
|
251 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
252 |
+
|
253 |
+
super().__init__(
|
254 |
+
num_labels=num_labels,
|
255 |
+
pad_token_id=pad_token_id,
|
256 |
+
bos_token_id=bos_token_id,
|
257 |
+
eos_token_id=eos_token_id,
|
258 |
+
is_encoder_decoder=is_encoder_decoder,
|
259 |
+
decoder_start_token_id=decoder_start_token_id,
|
260 |
+
forced_eos_token_id=forced_eos_token_id,
|
261 |
+
**kwargs,
|
262 |
+
)
|
263 |
+
|
264 |
+
# ensure backward compatibility for BART CNN models
|
265 |
+
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
266 |
+
self.forced_bos_token_id = self.bos_token_id
|
267 |
+
warnings.warn(
|
268 |
+
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
269 |
+
"The config can simply be saved and uploaded again to be fixed."
|
270 |
+
)
|
271 |
+
|
272 |
+
class Florence2Config(PretrainedConfig):
|
273 |
+
r"""
|
274 |
+
This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
|
275 |
+
Florence-2 model according to the specified arguments, defining the model architecture.
|
276 |
+
|
277 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
278 |
+
documentation from [`PretrainedConfig`] for more information.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
vision_config (`Florence2VisionConfig`, *optional*):
|
282 |
+
Custom vision config or dict
|
283 |
+
text_config (`Union[AutoConfig, dict]`, *optional*):
|
284 |
+
The config object of the text backbone.
|
285 |
+
ignore_index (`int`, *optional*, defaults to -100):
|
286 |
+
The ignore index for the loss function.
|
287 |
+
vocab_size (`int`, *optional*, defaults to 51289):
|
288 |
+
Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
|
289 |
+
`inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
|
290 |
+
projection_dim (`int`, *optional*, defaults to 1024):
|
291 |
+
Dimension of the multimodal projection space.
|
292 |
+
|
293 |
+
Example:
|
294 |
+
|
295 |
+
```python
|
296 |
+
>>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
|
297 |
+
|
298 |
+
>>> # Initializing a clip-like vision config
|
299 |
+
>>> vision_config = CLIPVisionConfig()
|
300 |
+
|
301 |
+
>>> # Initializing a Bart config
|
302 |
+
>>> text_config = BartConfig()
|
303 |
+
|
304 |
+
>>> # Initializing a Florence-2 configuration
|
305 |
+
>>> configuration = Florence2Config(vision_config, text_config)
|
306 |
+
|
307 |
+
>>> # Initializing a model from the florence-2 configuration
|
308 |
+
>>> model = Florence2ForConditionalGeneration(configuration)
|
309 |
+
|
310 |
+
>>> # Accessing the model configuration
|
311 |
+
>>> configuration = model.config
|
312 |
+
```"""
|
313 |
+
|
314 |
+
model_type = "florence2"
|
315 |
+
is_composition = False
|
316 |
+
|
317 |
+
def __init__(
|
318 |
+
self,
|
319 |
+
vision_config=None,
|
320 |
+
text_config=None,
|
321 |
+
ignore_index=-100,
|
322 |
+
vocab_size=51289,
|
323 |
+
projection_dim=1024,
|
324 |
+
**kwargs,
|
325 |
+
):
|
326 |
+
self.ignore_index = ignore_index
|
327 |
+
self.vocab_size = vocab_size
|
328 |
+
self.projection_dim = projection_dim
|
329 |
+
if vision_config is not None:
|
330 |
+
vision_config = PretrainedConfig(**vision_config)
|
331 |
+
self.vision_config = vision_config
|
332 |
+
self.vocab_size = self.vocab_size
|
333 |
+
|
334 |
+
self.text_config = text_config
|
335 |
+
if text_config is not None:
|
336 |
+
self.text_config = Florence2LanguageConfig(**text_config)
|
337 |
+
|
338 |
+
|
339 |
+
super().__init__(**kwargs)
|
340 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"num_beams": 3,
|
3 |
+
"early_stopping": false
|
4 |
+
}
|
modeling_florence2.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_florence2.Florence2Processor"
|
4 |
+
},
|
5 |
+
"_valid_processor_keys": [
|
6 |
+
"images",
|
7 |
+
"do_resize",
|
8 |
+
"size",
|
9 |
+
"resample",
|
10 |
+
"do_rescale",
|
11 |
+
"rescale_factor",
|
12 |
+
"do_normalize",
|
13 |
+
"image_mean",
|
14 |
+
"image_std",
|
15 |
+
"return_tensors",
|
16 |
+
"data_format",
|
17 |
+
"input_data_format",
|
18 |
+
"do_convert_rgb"
|
19 |
+
],
|
20 |
+
"do_convert_rgb": null,
|
21 |
+
"do_normalize": true,
|
22 |
+
"do_rescale": true,
|
23 |
+
"do_resize": true,
|
24 |
+
"do_center_crop": false,
|
25 |
+
"image_processor_type": "CLIPImageProcessor",
|
26 |
+
"image_seq_length": 577,
|
27 |
+
"image_mean": [0.485, 0.456, 0.406],
|
28 |
+
"image_std": [0.229, 0.224, 0.225],
|
29 |
+
"processor_class": "Florence2Processor",
|
30 |
+
"resample": 3,
|
31 |
+
"size": {
|
32 |
+
"height": 768,
|
33 |
+
"width":768
|
34 |
+
},
|
35 |
+
"crop_size": {
|
36 |
+
"height": 768,
|
37 |
+
"width": 768
|
38 |
+
}
|
39 |
+
}
|
processing_florence2.py
ADDED
@@ -0,0 +1,1088 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Florence-2.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import re
|
20 |
+
import logging
|
21 |
+
from typing import List, Optional, Union
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from transformers.feature_extraction_utils import BatchFeature
|
27 |
+
from transformers.image_utils import ImageInput, is_valid_image
|
28 |
+
from transformers.processing_utils import ProcessorMixin
|
29 |
+
from transformers.tokenization_utils_base import (
|
30 |
+
PaddingStrategy,
|
31 |
+
PreTokenizedInput,
|
32 |
+
TextInput,
|
33 |
+
TruncationStrategy,
|
34 |
+
)
|
35 |
+
from transformers.utils import TensorType
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_url
|
41 |
+
def is_url(val) -> bool:
|
42 |
+
return isinstance(val, str) and val.startswith("http")
|
43 |
+
|
44 |
+
# Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
|
45 |
+
def is_image_or_image_url(elem):
|
46 |
+
return is_url(elem) or is_valid_image(elem)
|
47 |
+
|
48 |
+
|
49 |
+
def _is_str_or_image(elem):
|
50 |
+
return isinstance(elem, (str)) or is_image_or_image_url(elem)
|
51 |
+
|
52 |
+
|
53 |
+
class Florence2Processor(ProcessorMixin):
|
54 |
+
r"""
|
55 |
+
Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
|
56 |
+
|
57 |
+
[`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
|
58 |
+
[`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
image_processor ([`CLIPImageProcessor`], *optional*):
|
62 |
+
The image processor is a required input.
|
63 |
+
tokenizer ([`BartTokenizerFast`], *optional*):
|
64 |
+
The tokenizer is a required input.
|
65 |
+
"""
|
66 |
+
|
67 |
+
attributes = ["image_processor", "tokenizer"]
|
68 |
+
image_processor_class = "CLIPImageProcessor"
|
69 |
+
tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
|
70 |
+
|
71 |
+
def __init__(
|
72 |
+
self,
|
73 |
+
image_processor=None,
|
74 |
+
tokenizer=None,
|
75 |
+
):
|
76 |
+
if image_processor is None:
|
77 |
+
raise ValueError("You need to specify an `image_processor`.")
|
78 |
+
if tokenizer is None:
|
79 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
80 |
+
if not hasattr(image_processor, "image_seq_length"):
|
81 |
+
raise ValueError("Image processor is missing an `image_seq_length` attribute.")
|
82 |
+
|
83 |
+
self.image_seq_length = image_processor.image_seq_length
|
84 |
+
|
85 |
+
tokens_to_add = {
|
86 |
+
'additional_special_tokens': \
|
87 |
+
tokenizer.additional_special_tokens + \
|
88 |
+
['<od>', '</od>', '<ocr>', '</ocr>'] + \
|
89 |
+
[f'<loc_{x}>' for x in range(1000)] + \
|
90 |
+
['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
|
91 |
+
}
|
92 |
+
tokenizer.add_special_tokens(tokens_to_add)
|
93 |
+
|
94 |
+
self.tasks_answer_post_processing_type = {
|
95 |
+
'<OCR>': 'pure_text',
|
96 |
+
'<OCR_WITH_REGION>': 'ocr',
|
97 |
+
'<CAPTION>': 'pure_text',
|
98 |
+
'<DETAILED_CAPTION>': 'pure_text',
|
99 |
+
'<MORE_DETAILED_CAPTION>': 'pure_text',
|
100 |
+
'<OD>': 'description_with_bboxes',
|
101 |
+
'<DENSE_REGION_CAPTION>': 'description_with_bboxes',
|
102 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
|
103 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
|
104 |
+
'<REGION_TO_SEGMENTATION>': 'polygons',
|
105 |
+
'<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
|
106 |
+
'<REGION_TO_CATEGORY>': 'pure_text',
|
107 |
+
'<REGION_TO_DESCRIPTION>': 'pure_text',
|
108 |
+
'<REGION_TO_OCR>': 'pure_text',
|
109 |
+
'<REGION_PROPOSAL>': 'bboxes'
|
110 |
+
}
|
111 |
+
|
112 |
+
self.task_prompts_without_inputs = {
|
113 |
+
'<OCR>': 'What is the text in the image?',
|
114 |
+
'<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
|
115 |
+
'<CAPTION>': 'What does the image describe?',
|
116 |
+
'<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
|
117 |
+
'<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
|
118 |
+
'<OD>': 'Locate the objects with category name in the image.',
|
119 |
+
'<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
|
120 |
+
'<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
|
121 |
+
}
|
122 |
+
|
123 |
+
self.task_prompts_with_input = {
|
124 |
+
'<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
|
125 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
|
126 |
+
'<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
|
127 |
+
'<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
|
128 |
+
'<REGION_TO_CATEGORY>': 'What is the region {input}?',
|
129 |
+
'<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
|
130 |
+
'<REGION_TO_OCR>': 'What text is in the region {input}?',
|
131 |
+
}
|
132 |
+
|
133 |
+
self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
|
134 |
+
|
135 |
+
|
136 |
+
super().__init__(image_processor, tokenizer)
|
137 |
+
|
138 |
+
def _construct_prompts(self, text):
|
139 |
+
# replace the task tokens with the task prompts if task token is in the text
|
140 |
+
prompts = []
|
141 |
+
for _text in text:
|
142 |
+
# 1. fixed task prompts without additional inputs
|
143 |
+
for task_token, task_prompt in self.task_prompts_without_inputs.items():
|
144 |
+
if task_token in _text:
|
145 |
+
assert _text == task_token, f"Task token {task_token} should be the only token in the text."
|
146 |
+
_text = task_prompt
|
147 |
+
break
|
148 |
+
# 2. task prompts with additional inputs
|
149 |
+
for task_token, task_prompt in self.task_prompts_with_input.items():
|
150 |
+
if task_token in _text:
|
151 |
+
_text = task_prompt.format(input=_text.replace(task_token, ''))
|
152 |
+
break
|
153 |
+
prompts.append(_text)
|
154 |
+
return prompts
|
155 |
+
|
156 |
+
def __call__(
|
157 |
+
self,
|
158 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
159 |
+
images: ImageInput = None,
|
160 |
+
tokenize_newline_separately: bool = True,
|
161 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
162 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
163 |
+
max_length=None,
|
164 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
165 |
+
do_resize: bool = None,
|
166 |
+
do_normalize: bool = None,
|
167 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
168 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
169 |
+
data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
|
170 |
+
input_data_format: Optional[
|
171 |
+
Union[str, "ChannelDimension"] # noqa: F821
|
172 |
+
] = None,
|
173 |
+
resample: "PILImageResampling" = None, # noqa: F821
|
174 |
+
do_convert_rgb: bool = None,
|
175 |
+
do_thumbnail: bool = None,
|
176 |
+
do_align_long_axis: bool = None,
|
177 |
+
do_rescale: bool = None,
|
178 |
+
) -> BatchFeature:
|
179 |
+
"""
|
180 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
181 |
+
and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
|
182 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
183 |
+
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
184 |
+
of the above two methods for more information.
|
185 |
+
|
186 |
+
Args:
|
187 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
188 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
189 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
190 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
191 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
192 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
193 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
194 |
+
number of channels, H and W are image height and width.
|
195 |
+
tokenize_newline_separately (`bool`, defaults to `True`):
|
196 |
+
Adds a separately tokenized '\n' at the end of the prompt.
|
197 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
198 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
199 |
+
index) among:
|
200 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
201 |
+
sequence if provided).
|
202 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
203 |
+
acceptable input length for the model if that argument is not provided.
|
204 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
205 |
+
lengths).
|
206 |
+
max_length (`int`, *optional*):
|
207 |
+
Maximum length of the returned list and optionally padding length (see above).
|
208 |
+
truncation (`bool`, *optional*):
|
209 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
210 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
211 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
212 |
+
|
213 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
214 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
215 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
216 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
217 |
+
|
218 |
+
Returns:
|
219 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
220 |
+
|
221 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
|
222 |
+
is provided, the `input_ids` will also contain the suffix input ids.
|
223 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
224 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
225 |
+
`None`).
|
226 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
227 |
+
- **labels** -- Labels compatible with training if `suffix` is not None
|
228 |
+
"""
|
229 |
+
|
230 |
+
return_token_type_ids = False
|
231 |
+
|
232 |
+
if images is None:
|
233 |
+
raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
|
234 |
+
if text is None:
|
235 |
+
logger.warning_once(
|
236 |
+
"You are using Florence-2 without a text prompt."
|
237 |
+
)
|
238 |
+
text = ""
|
239 |
+
|
240 |
+
if isinstance(text, List) and isinstance(images, List):
|
241 |
+
if len(images) < len(text):
|
242 |
+
raise ValueError(
|
243 |
+
f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
|
244 |
+
)
|
245 |
+
if _is_str_or_image(text):
|
246 |
+
text = [text]
|
247 |
+
elif isinstance(text, list) and _is_str_or_image(text[0]):
|
248 |
+
pass
|
249 |
+
|
250 |
+
pixel_values = self.image_processor(
|
251 |
+
images,
|
252 |
+
do_resize=do_resize,
|
253 |
+
do_normalize=do_normalize,
|
254 |
+
return_tensors=return_tensors,
|
255 |
+
image_mean=image_mean,
|
256 |
+
image_std=image_std,
|
257 |
+
input_data_format=input_data_format,
|
258 |
+
data_format=data_format,
|
259 |
+
resample=resample,
|
260 |
+
do_convert_rgb=do_convert_rgb,
|
261 |
+
)["pixel_values"]
|
262 |
+
|
263 |
+
if max_length is not None:
|
264 |
+
max_length -= self.image_seq_length # max_length has to account for the image tokens
|
265 |
+
|
266 |
+
text = self._construct_prompts(text)
|
267 |
+
|
268 |
+
inputs = self.tokenizer(
|
269 |
+
text,
|
270 |
+
return_tensors=return_tensors,
|
271 |
+
padding=padding,
|
272 |
+
max_length=max_length,
|
273 |
+
truncation=truncation,
|
274 |
+
return_token_type_ids=return_token_type_ids,
|
275 |
+
)
|
276 |
+
|
277 |
+
return_data = {**inputs, "pixel_values": pixel_values}
|
278 |
+
|
279 |
+
if return_token_type_ids:
|
280 |
+
labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
|
281 |
+
return_data.update({"labels": labels})
|
282 |
+
return BatchFeature(data=return_data)
|
283 |
+
|
284 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
|
285 |
+
def batch_decode(self, *args, **kwargs):
|
286 |
+
"""
|
287 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
288 |
+
refer to the docstring of this method for more information.
|
289 |
+
"""
|
290 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
291 |
+
|
292 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
|
293 |
+
def decode(self, *args, **kwargs):
|
294 |
+
"""
|
295 |
+
This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
296 |
+
the docstring of this method for more information.
|
297 |
+
"""
|
298 |
+
return self.tokenizer.decode(*args, **kwargs)
|
299 |
+
|
300 |
+
@property
|
301 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
|
302 |
+
def model_input_names(self):
|
303 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
304 |
+
image_processor_input_names = self.image_processor.model_input_names
|
305 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
306 |
+
|
307 |
+
def post_process_generation(self, text, task, image_size):
|
308 |
+
"""
|
309 |
+
Post-process the output of the model to each of the task outputs.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
text (`str`): The text to post-process.
|
313 |
+
task (`str`): The task to post-process the text for.
|
314 |
+
image_size (`Tuple[int, int]`): The size of the image. height x width.
|
315 |
+
"""
|
316 |
+
|
317 |
+
task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
|
318 |
+
task_answer = self.post_processor(
|
319 |
+
text=text,
|
320 |
+
image_size=image_size,
|
321 |
+
parse_tasks=task_answer_post_processing_type,
|
322 |
+
)[task_answer_post_processing_type]
|
323 |
+
|
324 |
+
if task_answer_post_processing_type == 'pure_text':
|
325 |
+
final_answer = task_answer
|
326 |
+
# remove the special tokens
|
327 |
+
final_answer = final_answer.replace('<s>', '').replace('</s>', '')
|
328 |
+
elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
|
329 |
+
od_instances = task_answer
|
330 |
+
bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
|
331 |
+
labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
|
332 |
+
final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
|
333 |
+
elif task_answer_post_processing_type in ['ocr']:
|
334 |
+
bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
|
335 |
+
labels = [str(_od_instance['text']) for _od_instance in task_answer]
|
336 |
+
final_answer = {'quad_boxes': bboxes, 'labels': labels}
|
337 |
+
elif task_answer_post_processing_type in ['phrase_grounding']:
|
338 |
+
bboxes = []
|
339 |
+
labels = []
|
340 |
+
for _grounded_phrase in task_answer:
|
341 |
+
for _bbox in _grounded_phrase['bbox']:
|
342 |
+
bboxes.append(_bbox)
|
343 |
+
labels.append(_grounded_phrase['cat_name'])
|
344 |
+
final_answer = {'bboxes': bboxes, 'labels': labels}
|
345 |
+
elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
|
346 |
+
labels = []
|
347 |
+
polygons = []
|
348 |
+
for result in task_answer:
|
349 |
+
label = result['cat_name']
|
350 |
+
_polygons = result['polygons']
|
351 |
+
labels.append(label)
|
352 |
+
polygons.append(_polygons)
|
353 |
+
final_answer = {'polygons': polygons, 'labels': labels}
|
354 |
+
elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
|
355 |
+
bboxes = []
|
356 |
+
bboxes_labels = []
|
357 |
+
polygons = []
|
358 |
+
polygons_labels = []
|
359 |
+
for result in task_answer:
|
360 |
+
label = result['cat_name']
|
361 |
+
if 'polygons' in result:
|
362 |
+
_polygons = result['polygons']
|
363 |
+
polygons.append(_polygons)
|
364 |
+
polygons_labels.append(label)
|
365 |
+
else:
|
366 |
+
_bbox = result['bbox']
|
367 |
+
bboxes.append(_bbox)
|
368 |
+
bboxes_labels.append(label)
|
369 |
+
final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
|
370 |
+
else:
|
371 |
+
raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
|
372 |
+
|
373 |
+
final_answer = {
|
374 |
+
task: final_answer}
|
375 |
+
return final_answer
|
376 |
+
|
377 |
+
class BoxQuantizer(object):
|
378 |
+
def __init__(self, mode, bins):
|
379 |
+
self.mode = mode
|
380 |
+
self.bins = bins
|
381 |
+
|
382 |
+
def quantize(self, boxes: torch.Tensor, size):
|
383 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
384 |
+
size_w, size_h = size # Original image size.
|
385 |
+
size_per_bin_w = size_w / bins_w
|
386 |
+
size_per_bin_h = size_h / bins_h
|
387 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
388 |
+
|
389 |
+
if self.mode == 'floor':
|
390 |
+
quantized_xmin = (
|
391 |
+
xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
392 |
+
quantized_ymin = (
|
393 |
+
ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
394 |
+
quantized_xmax = (
|
395 |
+
xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
396 |
+
quantized_ymax = (
|
397 |
+
ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
398 |
+
|
399 |
+
elif self.mode == 'round':
|
400 |
+
raise NotImplementedError()
|
401 |
+
|
402 |
+
else:
|
403 |
+
raise ValueError('Incorrect quantization type.')
|
404 |
+
|
405 |
+
quantized_boxes = torch.cat(
|
406 |
+
(quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
|
407 |
+
).int()
|
408 |
+
|
409 |
+
return quantized_boxes
|
410 |
+
|
411 |
+
def dequantize(self, boxes: torch.Tensor, size):
|
412 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
413 |
+
size_w, size_h = size # Original image size.
|
414 |
+
size_per_bin_w = size_w / bins_w
|
415 |
+
size_per_bin_h = size_h / bins_h
|
416 |
+
xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
|
417 |
+
|
418 |
+
if self.mode == 'floor':
|
419 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
420 |
+
dequantized_xmin = (xmin + 0.5) * size_per_bin_w
|
421 |
+
dequantized_ymin = (ymin + 0.5) * size_per_bin_h
|
422 |
+
dequantized_xmax = (xmax + 0.5) * size_per_bin_w
|
423 |
+
dequantized_ymax = (ymax + 0.5) * size_per_bin_h
|
424 |
+
|
425 |
+
elif self.mode == 'round':
|
426 |
+
raise NotImplementedError()
|
427 |
+
|
428 |
+
else:
|
429 |
+
raise ValueError('Incorrect quantization type.')
|
430 |
+
|
431 |
+
dequantized_boxes = torch.cat(
|
432 |
+
(dequantized_xmin, dequantized_ymin,
|
433 |
+
dequantized_xmax, dequantized_ymax), dim=-1
|
434 |
+
)
|
435 |
+
|
436 |
+
return dequantized_boxes
|
437 |
+
|
438 |
+
|
439 |
+
class CoordinatesQuantizer(object):
|
440 |
+
"""
|
441 |
+
Quantize coornidates (Nx2)
|
442 |
+
"""
|
443 |
+
|
444 |
+
def __init__(self, mode, bins):
|
445 |
+
self.mode = mode
|
446 |
+
self.bins = bins
|
447 |
+
|
448 |
+
def quantize(self, coordinates: torch.Tensor, size):
|
449 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
450 |
+
size_w, size_h = size # Original image size.
|
451 |
+
size_per_bin_w = size_w / bins_w
|
452 |
+
size_per_bin_h = size_h / bins_h
|
453 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
454 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
455 |
+
|
456 |
+
if self.mode == 'floor':
|
457 |
+
quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
|
458 |
+
quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
|
459 |
+
|
460 |
+
elif self.mode == 'round':
|
461 |
+
raise NotImplementedError()
|
462 |
+
|
463 |
+
else:
|
464 |
+
raise ValueError('Incorrect quantization type.')
|
465 |
+
|
466 |
+
quantized_coordinates = torch.cat(
|
467 |
+
(quantized_x, quantized_y), dim=-1
|
468 |
+
).int()
|
469 |
+
|
470 |
+
return quantized_coordinates
|
471 |
+
|
472 |
+
def dequantize(self, coordinates: torch.Tensor, size):
|
473 |
+
bins_w, bins_h = self.bins # Quantization bins.
|
474 |
+
size_w, size_h = size # Original image size.
|
475 |
+
size_per_bin_w = size_w / bins_w
|
476 |
+
size_per_bin_h = size_h / bins_h
|
477 |
+
assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
|
478 |
+
x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
|
479 |
+
|
480 |
+
if self.mode == 'floor':
|
481 |
+
# Add 0.5 to use the center position of the bin as the coordinate.
|
482 |
+
dequantized_x = (x + 0.5) * size_per_bin_w
|
483 |
+
dequantized_y = (y + 0.5) * size_per_bin_h
|
484 |
+
|
485 |
+
elif self.mode == 'round':
|
486 |
+
raise NotImplementedError()
|
487 |
+
|
488 |
+
else:
|
489 |
+
raise ValueError('Incorrect quantization type.')
|
490 |
+
|
491 |
+
dequantized_coordinates = torch.cat(
|
492 |
+
(dequantized_x, dequantized_y), dim=-1
|
493 |
+
)
|
494 |
+
|
495 |
+
return dequantized_coordinates
|
496 |
+
|
497 |
+
|
498 |
+
class Florence2PostProcesser(object):
|
499 |
+
r"""
|
500 |
+
Florence-2 post process for converting text prediction to various tasks results.
|
501 |
+
|
502 |
+
Args:
|
503 |
+
config: A dict of configs.
|
504 |
+
tokenizer: A tokenizer for decoding text to spans.
|
505 |
+
sample config:
|
506 |
+
UNIFIED_POST_PROCESS:
|
507 |
+
# commom configs
|
508 |
+
NUM_BBOX_HEIGHT_BINS: 1000
|
509 |
+
NUM_BBOX_WIDTH_BINS: 1000
|
510 |
+
COORDINATES_HEIGHT_BINS: 1000
|
511 |
+
COORDINATES_WIDTH_BINS: 1000
|
512 |
+
# task specific configs, override the common configs
|
513 |
+
PRASE_TASKS:
|
514 |
+
- TASK_NAME: 'video_dense_caption'
|
515 |
+
PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
|
516 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
517 |
+
NUM_BINS: 100
|
518 |
+
- TASK_NAME: 'od'
|
519 |
+
PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
|
520 |
+
SCORE_MODE: 'avg_cat_name_scores'
|
521 |
+
|
522 |
+
Returns:
|
523 |
+
parsed_dict (dict): A dict of parsed results.
|
524 |
+
"""
|
525 |
+
def __init__(
|
526 |
+
self,
|
527 |
+
tokenizer=None
|
528 |
+
):
|
529 |
+
parse_tasks = []
|
530 |
+
parse_task_configs = {}
|
531 |
+
config = self._create_default_config()
|
532 |
+
for task in config['PARSE_TASKS']:
|
533 |
+
parse_tasks.append(task['TASK_NAME'])
|
534 |
+
parse_task_configs[task['TASK_NAME']] = task
|
535 |
+
|
536 |
+
self.config = config
|
537 |
+
self.parse_tasks = parse_tasks
|
538 |
+
self.parse_tasks_configs = parse_task_configs
|
539 |
+
|
540 |
+
self.tokenizer = tokenizer
|
541 |
+
if self.tokenizer is not None:
|
542 |
+
self.all_special_tokens = set(self.tokenizer.all_special_tokens)
|
543 |
+
|
544 |
+
self.init_quantizers()
|
545 |
+
self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
|
546 |
+
|
547 |
+
def _create_black_list_of_phrase_grounding(self):
|
548 |
+
black_list = {}
|
549 |
+
|
550 |
+
if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
|
551 |
+
black_list = set(
|
552 |
+
['it', 'I', 'me', 'mine',
|
553 |
+
'you', 'your', 'yours',
|
554 |
+
'he', 'him', 'his',
|
555 |
+
'she', 'her', 'hers',
|
556 |
+
'they', 'them', 'their', 'theirs',
|
557 |
+
'one', 'oneself',
|
558 |
+
'we', 'us', 'our', 'ours',
|
559 |
+
'you', 'your', 'yours',
|
560 |
+
'they', 'them', 'their', 'theirs',
|
561 |
+
'mine', 'yours', 'his', 'hers', 'its',
|
562 |
+
'ours', 'yours', 'theirs',
|
563 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
564 |
+
'ourselves', 'yourselves', 'themselves',
|
565 |
+
'this', 'that',
|
566 |
+
'these', 'those',
|
567 |
+
'who', 'whom', 'whose', 'which', 'what',
|
568 |
+
'who', 'whom', 'whose', 'which', 'that',
|
569 |
+
'all', 'another', 'any', 'anybody', 'anyone', 'anything',
|
570 |
+
'each', 'everybody', 'everyone', 'everything',
|
571 |
+
'few', 'many', 'nobody', 'none', 'one', 'several',
|
572 |
+
'some', 'somebody', 'someone', 'something',
|
573 |
+
'each other', 'one another',
|
574 |
+
'myself', 'yourself', 'himself', 'herself', 'itself',
|
575 |
+
'ourselves', 'yourselves', 'themselves',
|
576 |
+
'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
|
577 |
+
'other objects', 'lots', 'a set',
|
578 |
+
]
|
579 |
+
)
|
580 |
+
|
581 |
+
return black_list
|
582 |
+
|
583 |
+
def _create_default_config(self):
|
584 |
+
config = {
|
585 |
+
'NUM_BBOX_HEIGHT_BINS': 1000,
|
586 |
+
'NUM_BBOX_WIDTH_BINS': 1000,
|
587 |
+
'BOX_QUANTIZATION_MODE': 'floor',
|
588 |
+
'COORDINATES_HEIGHT_BINS': 1000,
|
589 |
+
'COORDINATES_WIDTH_BINS': 1000,
|
590 |
+
'COORDINATES_QUANTIZATION_MODE': 'floor',
|
591 |
+
'PARSE_TASKS': [
|
592 |
+
{
|
593 |
+
'TASK_NAME': 'od',
|
594 |
+
'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>'
|
595 |
+
},
|
596 |
+
{
|
597 |
+
'TASK_NAME': 'ocr',
|
598 |
+
'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
|
599 |
+
'AREA_THRESHOLD': 0.00
|
600 |
+
},
|
601 |
+
{
|
602 |
+
'TASK_NAME': 'phrase_grounding',
|
603 |
+
'FILTER_BY_BLACK_LIST': True
|
604 |
+
},
|
605 |
+
{
|
606 |
+
'TASK_NAME': 'pure_text',
|
607 |
+
},
|
608 |
+
{
|
609 |
+
'TASK_NAME': 'description_with_bboxes',
|
610 |
+
},
|
611 |
+
{
|
612 |
+
'TASK_NAME': 'description_with_polygons',
|
613 |
+
},
|
614 |
+
{
|
615 |
+
'TASK_NAME': 'polygons',
|
616 |
+
},
|
617 |
+
{
|
618 |
+
'TASK_NAME': 'bboxes',
|
619 |
+
},
|
620 |
+
{
|
621 |
+
'TASK_NAME': 'description_with_bboxes_or_polygons',
|
622 |
+
}
|
623 |
+
]
|
624 |
+
}
|
625 |
+
|
626 |
+
return config
|
627 |
+
|
628 |
+
def init_quantizers(self):
|
629 |
+
# we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
|
630 |
+
num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
631 |
+
num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
632 |
+
box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
633 |
+
self.box_quantizer = BoxQuantizer(
|
634 |
+
box_quantization_mode,
|
635 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
636 |
+
)
|
637 |
+
|
638 |
+
num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
|
639 |
+
num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
|
640 |
+
box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
|
641 |
+
self.coordinates_quantizer = CoordinatesQuantizer(
|
642 |
+
box_quantization_mode,
|
643 |
+
(num_bbox_width_bins, num_bbox_height_bins),
|
644 |
+
)
|
645 |
+
|
646 |
+
def decode_with_spans(self, tokenizer, token_ids):
|
647 |
+
filtered_tokens = tokenizer.convert_ids_to_tokens(
|
648 |
+
token_ids, skip_special_tokens=False)
|
649 |
+
assert len(filtered_tokens) == len(token_ids)
|
650 |
+
|
651 |
+
# To avoid mixing byte-level and unicode for byte-level BPT
|
652 |
+
# we need to build string separately for added tokens and byte-level tokens
|
653 |
+
# cf. https://github.com/huggingface/transformers/issues/1133
|
654 |
+
sub_texts = []
|
655 |
+
for token in filtered_tokens:
|
656 |
+
if token in self.all_special_tokens:
|
657 |
+
sub_texts.append(token)
|
658 |
+
else:
|
659 |
+
if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
|
660 |
+
sub_text = tokenizer.convert_tokens_to_string([token])
|
661 |
+
elif isinstance(tokenizer, (T5Tokenizer, T5TokenizerFast)):
|
662 |
+
# Ref: https://github.com/google/sentencepiece#whitespace-is-treated-as-a-basic-symbol
|
663 |
+
# Note: Do not strip sub_text as it may have functional whitespace
|
664 |
+
sub_text = token.replace('▁', ' ')
|
665 |
+
else:
|
666 |
+
raise ValueError(f'type {type(tokenizer)} not supported')
|
667 |
+
sub_texts.append(sub_text)
|
668 |
+
|
669 |
+
text = ''
|
670 |
+
spans = []
|
671 |
+
for sub_text in sub_texts:
|
672 |
+
span = (len(text), len(text) + len(sub_text)) # [start index, end index).
|
673 |
+
text += sub_text
|
674 |
+
spans.append(span)
|
675 |
+
|
676 |
+
# Text format:
|
677 |
+
# 1. T5Tokenizer/T5TokenizerFast:
|
678 |
+
# "<loc_1><loc_2><loc_3><loc_4> transplanting dog<loc_1><loc_2><loc_3><loc_4> cat</s>"
|
679 |
+
# Equivalent to t5_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
680 |
+
# 2. BartTokenizer (need to double check):
|
681 |
+
# "<s><loc_1><loc_2><loc_3><loc_4>transplanting dog<loc_1><loc_2><loc_3><loc_4>cat</s>"
|
682 |
+
# Equivalent to bart_tokenizer.decode(input_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False, spaces_between_special_tokens=False)
|
683 |
+
return text, spans
|
684 |
+
|
685 |
+
def parse_od_from_text_and_spans(
|
686 |
+
self,
|
687 |
+
text,
|
688 |
+
pattern,
|
689 |
+
image_size,
|
690 |
+
phrase_centric=False
|
691 |
+
):
|
692 |
+
parsed = list(re.finditer(pattern, text))
|
693 |
+
|
694 |
+
instances = []
|
695 |
+
for i in range(len(parsed)):
|
696 |
+
# Prepare instance.
|
697 |
+
instance = {}
|
698 |
+
|
699 |
+
if phrase_centric:
|
700 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
|
701 |
+
else:
|
702 |
+
bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
|
703 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
704 |
+
boxes=torch.tensor(bbox_bins),
|
705 |
+
size=image_size
|
706 |
+
).tolist()
|
707 |
+
|
708 |
+
if phrase_centric:
|
709 |
+
instance['cat_name'] = parsed[i].group(1).lower().strip()
|
710 |
+
else:
|
711 |
+
instance['cat_name'] = parsed[i].group(5).lower().strip()
|
712 |
+
instances.append(instance)
|
713 |
+
|
714 |
+
return instances
|
715 |
+
|
716 |
+
def parse_ocr_from_text_and_spans(self,
|
717 |
+
text,
|
718 |
+
pattern,
|
719 |
+
image_size,
|
720 |
+
area_threshold=-1.0,
|
721 |
+
):
|
722 |
+
bboxes = []
|
723 |
+
labels = []
|
724 |
+
text = text.replace('<s>', '')
|
725 |
+
# ocr with regions
|
726 |
+
parsed = re.findall(pattern, text)
|
727 |
+
instances = []
|
728 |
+
image_width, image_height = image_size
|
729 |
+
|
730 |
+
for ocr_line in parsed:
|
731 |
+
ocr_content = ocr_line[0]
|
732 |
+
quad_box = ocr_line[1:]
|
733 |
+
quad_box = [int(i) for i in quad_box]
|
734 |
+
quad_box = self.coordinates_quantizer.dequantize(
|
735 |
+
torch.tensor(np.array(quad_box).reshape(-1, 2)),
|
736 |
+
size=image_size
|
737 |
+
).reshape(-1).tolist()
|
738 |
+
|
739 |
+
if area_threshold > 0:
|
740 |
+
x_coords = [i for i in quad_box[0::2]]
|
741 |
+
y_coords = [i for i in quad_box[1::2]]
|
742 |
+
|
743 |
+
# apply the Shoelace formula
|
744 |
+
area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
|
745 |
+
|
746 |
+
if area < (image_width * image_height) * area_threshold:
|
747 |
+
continue
|
748 |
+
|
749 |
+
bboxes.append(quad_box)
|
750 |
+
labels.append(ocr_content)
|
751 |
+
instances.append({
|
752 |
+
'quad_box': quad_box,
|
753 |
+
'text': ocr_content,
|
754 |
+
})
|
755 |
+
return instances
|
756 |
+
|
757 |
+
def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
|
758 |
+
# ignore <s> </s> and <pad>
|
759 |
+
cur_span = 0
|
760 |
+
if text.startswith('<s>'):
|
761 |
+
cur_span += 3
|
762 |
+
|
763 |
+
text = text.replace('<s>', '')
|
764 |
+
text = text.replace('</s>', '')
|
765 |
+
text = text.replace('<pad>', '')
|
766 |
+
|
767 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
768 |
+
phrases = re.findall(pattern, text)
|
769 |
+
|
770 |
+
# pattern should be text pattern and od pattern
|
771 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
772 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
773 |
+
|
774 |
+
instances = []
|
775 |
+
for pharse_text in phrases:
|
776 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
777 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
778 |
+
|
779 |
+
if phrase_text_strip == '':
|
780 |
+
cur_span += len(pharse_text)
|
781 |
+
continue
|
782 |
+
|
783 |
+
# Prepare instance.
|
784 |
+
instance = {}
|
785 |
+
|
786 |
+
# parse phrase, get string
|
787 |
+
phrase = re.search(pattern, phrase_text_strip)
|
788 |
+
if phrase is None:
|
789 |
+
cur_span += len(pharse_text)
|
790 |
+
continue
|
791 |
+
|
792 |
+
# parse bboxes by box_pattern
|
793 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
794 |
+
if len(bboxes_parsed) == 0:
|
795 |
+
cur_span += len(pharse_text)
|
796 |
+
continue
|
797 |
+
|
798 |
+
phrase = phrase.group()
|
799 |
+
# remove leading and trailing spaces
|
800 |
+
phrase = phrase.strip()
|
801 |
+
|
802 |
+
if phrase in self.black_list_of_phrase_grounding:
|
803 |
+
cur_span += len(pharse_text)
|
804 |
+
continue
|
805 |
+
|
806 |
+
# a list of list
|
807 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
808 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
809 |
+
boxes=torch.tensor(bbox_bins),
|
810 |
+
size=image_size
|
811 |
+
).tolist()
|
812 |
+
|
813 |
+
# exclude non-ascii characters
|
814 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
815 |
+
instance['cat_name'] = phrase
|
816 |
+
|
817 |
+
instances.append(instance)
|
818 |
+
|
819 |
+
return instances
|
820 |
+
|
821 |
+
def parse_description_with_bboxes_from_text_and_spans(self, text, pattern, image_size, allow_empty_phrase=False):
|
822 |
+
# temporary parse solution, split by '.'
|
823 |
+
# ignore <s> </s> and <pad>
|
824 |
+
|
825 |
+
text = text.replace('<s>', '')
|
826 |
+
text = text.replace('</s>', '')
|
827 |
+
text = text.replace('<pad>', '')
|
828 |
+
|
829 |
+
if allow_empty_phrase:
|
830 |
+
pattern = rf"(?:(?:<loc_\d+>){{4,}})"
|
831 |
+
else:
|
832 |
+
pattern = r"([^<]+(?:<loc_\d+>){4,})"
|
833 |
+
phrases = re.findall(pattern, text)
|
834 |
+
|
835 |
+
# pattern should be text pattern and od pattern
|
836 |
+
pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
|
837 |
+
box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
|
838 |
+
|
839 |
+
instances = []
|
840 |
+
for pharse_text in phrases:
|
841 |
+
phrase_text_strip = pharse_text.replace('<ground>', '', 1)
|
842 |
+
phrase_text_strip = pharse_text.replace('<obj>', '', 1)
|
843 |
+
|
844 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
845 |
+
continue
|
846 |
+
|
847 |
+
# parse phrase, get string
|
848 |
+
phrase = re.search(pattern, phrase_text_strip)
|
849 |
+
if phrase is None:
|
850 |
+
continue
|
851 |
+
|
852 |
+
phrase = phrase.group()
|
853 |
+
# remove leading and trailing spaces
|
854 |
+
phrase = phrase.strip()
|
855 |
+
|
856 |
+
# parse bboxes by box_pattern
|
857 |
+
bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
|
858 |
+
if len(bboxes_parsed) == 0:
|
859 |
+
continue
|
860 |
+
|
861 |
+
# a list of list
|
862 |
+
bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
|
863 |
+
|
864 |
+
bboxes = self.box_quantizer.dequantize(
|
865 |
+
boxes=torch.tensor(bbox_bins),
|
866 |
+
size=image_size
|
867 |
+
).tolist()
|
868 |
+
|
869 |
+
phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
|
870 |
+
for _bboxes in bboxes:
|
871 |
+
# Prepare instance.
|
872 |
+
instance = {}
|
873 |
+
instance['bbox'] = _bboxes
|
874 |
+
# exclude non-ascii characters
|
875 |
+
instance['cat_name'] = phrase
|
876 |
+
instances.append(instance)
|
877 |
+
|
878 |
+
return instances
|
879 |
+
|
880 |
+
def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
|
881 |
+
allow_empty_phrase=False,
|
882 |
+
polygon_sep_token='<sep>',
|
883 |
+
polygon_start_token='<poly>',
|
884 |
+
polygon_end_token='</poly>',
|
885 |
+
with_box_at_start=False,
|
886 |
+
):
|
887 |
+
|
888 |
+
# ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
|
889 |
+
# ignore <s> </s> and <pad>
|
890 |
+
|
891 |
+
text = text.replace('<s>', '')
|
892 |
+
text = text.replace('</s>', '')
|
893 |
+
text = text.replace('<pad>', '')
|
894 |
+
|
895 |
+
if allow_empty_phrase:
|
896 |
+
pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
897 |
+
else:
|
898 |
+
# [^<]+: This part matches one or more characters that are not the < symbol.
|
899 |
+
# The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
|
900 |
+
#
|
901 |
+
pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
|
902 |
+
phrases = re.findall(pattern, text)
|
903 |
+
|
904 |
+
phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
|
905 |
+
box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
|
906 |
+
|
907 |
+
# one polygons instance is separated by polygon_start_token and polygon_end_token
|
908 |
+
polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
|
909 |
+
|
910 |
+
instances = []
|
911 |
+
for phrase_text in phrases:
|
912 |
+
|
913 |
+
# exclude loc_\d+>
|
914 |
+
# need to get span if want to include category score
|
915 |
+
phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
|
916 |
+
|
917 |
+
# phrase = phrase.replace('<poly>', '')
|
918 |
+
# phrase = phrase.replace('poly>', '')
|
919 |
+
|
920 |
+
if phrase_text_strip == '' and not allow_empty_phrase:
|
921 |
+
continue
|
922 |
+
|
923 |
+
|
924 |
+
# parse phrase, get string
|
925 |
+
phrase = re.search(phrase_string_pattern, phrase_text_strip)
|
926 |
+
if phrase is None:
|
927 |
+
continue
|
928 |
+
phrase = phrase.group()
|
929 |
+
# remove leading and trailing spaces
|
930 |
+
phrase = phrase.strip()
|
931 |
+
|
932 |
+
# parse bboxes by box_pattern
|
933 |
+
|
934 |
+
# split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
|
935 |
+
if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
|
936 |
+
polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
|
937 |
+
else:
|
938 |
+
polygons_instances_parsed = [phrase_text]
|
939 |
+
|
940 |
+
for _polygons_instances_parsed in polygons_instances_parsed:
|
941 |
+
# Prepare instance.
|
942 |
+
instance = {}
|
943 |
+
|
944 |
+
# polygons_parsed= list(re.finditer(box_pattern, phrase_text))
|
945 |
+
if isinstance(_polygons_instances_parsed, str):
|
946 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
|
947 |
+
else:
|
948 |
+
polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
|
949 |
+
if len(polygons_parsed) == 0:
|
950 |
+
continue
|
951 |
+
|
952 |
+
# a list of list (polygon)
|
953 |
+
bbox = []
|
954 |
+
polygons = []
|
955 |
+
for _polygon_parsed in polygons_parsed:
|
956 |
+
# group 1: whole <loc_\d+>...</loc_\d+>
|
957 |
+
_polygon = _polygon_parsed.group(1)
|
958 |
+
# parse into list of int
|
959 |
+
_polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
|
960 |
+
if with_box_at_start and len(bbox) == 0:
|
961 |
+
if len(_polygon) > 4:
|
962 |
+
# no valid bbox prediction
|
963 |
+
bbox = _polygon[:4]
|
964 |
+
_polygon = _polygon[4:]
|
965 |
+
else:
|
966 |
+
bbox = [0, 0, 0, 0]
|
967 |
+
# abandon last element if is not paired
|
968 |
+
if len(_polygon) % 2 == 1:
|
969 |
+
_polygon = _polygon[:-1]
|
970 |
+
|
971 |
+
# reshape into (n, 2)
|
972 |
+
_polygon = self.coordinates_quantizer.dequantize(
|
973 |
+
torch.tensor(np.array(_polygon).reshape(-1, 2)),
|
974 |
+
size=image_size
|
975 |
+
).reshape(-1).tolist()
|
976 |
+
# reshape back
|
977 |
+
polygons.append(_polygon)
|
978 |
+
|
979 |
+
instance['cat_name'] = phrase
|
980 |
+
instance['polygons'] = polygons
|
981 |
+
if len(bbox) != 0:
|
982 |
+
instance['bbox'] = self.box_quantizer.dequantize(
|
983 |
+
boxes=torch.tensor([bbox]),
|
984 |
+
size=image_size
|
985 |
+
).tolist()[0]
|
986 |
+
|
987 |
+
instances.append(instance)
|
988 |
+
|
989 |
+
return instances
|
990 |
+
|
991 |
+
def __call__(
|
992 |
+
self,
|
993 |
+
text=None,
|
994 |
+
image_size=None,
|
995 |
+
parse_tasks=None,
|
996 |
+
):
|
997 |
+
"""
|
998 |
+
Args:
|
999 |
+
text: model outputs
|
1000 |
+
image_size: (width, height)
|
1001 |
+
parse_tasks: a list of tasks to parse, if None, parse all tasks.
|
1002 |
+
|
1003 |
+
"""
|
1004 |
+
if parse_tasks is not None:
|
1005 |
+
if isinstance(parse_tasks, str):
|
1006 |
+
parse_tasks = [parse_tasks]
|
1007 |
+
for _parse_task in parse_tasks:
|
1008 |
+
assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
|
1009 |
+
|
1010 |
+
# sequence or text should be provided
|
1011 |
+
assert text is not None, 'text should be provided'
|
1012 |
+
|
1013 |
+
parsed_dict = {
|
1014 |
+
'text': text
|
1015 |
+
}
|
1016 |
+
|
1017 |
+
for task in self.parse_tasks:
|
1018 |
+
if parse_tasks is not None and task not in parse_tasks:
|
1019 |
+
continue
|
1020 |
+
|
1021 |
+
pattern = self.parse_tasks_configs[task].get('PATTERN', None)
|
1022 |
+
|
1023 |
+
if task == 'ocr':
|
1024 |
+
instances = self.parse_ocr_from_text_and_spans(
|
1025 |
+
text,
|
1026 |
+
pattern=pattern,
|
1027 |
+
image_size=image_size,
|
1028 |
+
area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
|
1029 |
+
)
|
1030 |
+
parsed_dict['ocr'] = instances
|
1031 |
+
elif task == 'phrase_grounding':
|
1032 |
+
instances = self.parse_phrase_grounding_from_text_and_spans(
|
1033 |
+
text,
|
1034 |
+
pattern=pattern,
|
1035 |
+
image_size=image_size,
|
1036 |
+
)
|
1037 |
+
parsed_dict['phrase_grounding'] = instances
|
1038 |
+
elif task == 'pure_text':
|
1039 |
+
parsed_dict['pure_text'] = text
|
1040 |
+
elif task == 'description_with_bboxes':
|
1041 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1042 |
+
text,
|
1043 |
+
pattern=pattern,
|
1044 |
+
image_size=image_size,
|
1045 |
+
)
|
1046 |
+
parsed_dict['description_with_bboxes'] = instances
|
1047 |
+
elif task == 'description_with_polygons':
|
1048 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1049 |
+
text,
|
1050 |
+
pattern=pattern,
|
1051 |
+
image_size=image_size,
|
1052 |
+
)
|
1053 |
+
parsed_dict['description_with_polygons'] = instances
|
1054 |
+
elif task == 'polygons':
|
1055 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1056 |
+
text,
|
1057 |
+
pattern=pattern,
|
1058 |
+
image_size=image_size,
|
1059 |
+
allow_empty_phrase=True,
|
1060 |
+
)
|
1061 |
+
parsed_dict['polygons'] = instances
|
1062 |
+
elif task == 'bboxes':
|
1063 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1064 |
+
text,
|
1065 |
+
pattern=pattern,
|
1066 |
+
image_size=image_size,
|
1067 |
+
allow_empty_phrase=True,
|
1068 |
+
)
|
1069 |
+
parsed_dict['bboxes'] = instances
|
1070 |
+
elif task == 'description_with_bboxes_or_polygons':
|
1071 |
+
if '<poly>' in text:
|
1072 |
+
# only support either polygons or bboxes, not both at the same time
|
1073 |
+
instances = self.parse_description_with_polygons_from_text_and_spans(
|
1074 |
+
text,
|
1075 |
+
pattern=pattern,
|
1076 |
+
image_size=image_size,
|
1077 |
+
)
|
1078 |
+
else:
|
1079 |
+
instances = self.parse_description_with_bboxes_from_text_and_spans(
|
1080 |
+
text,
|
1081 |
+
pattern=pattern,
|
1082 |
+
image_size=image_size,
|
1083 |
+
)
|
1084 |
+
parsed_dict['description_with_bboxes_or_polygons'] = instances
|
1085 |
+
else:
|
1086 |
+
raise ValueError("task {} is not supported".format(task))
|
1087 |
+
|
1088 |
+
return parsed_dict
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8b6ee6144f20a57200a0e3fab21f067d6cc77036262b72d9f6f7f4e556c8f15
|
3 |
+
size 1543107459
|
sample_inference.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_max_length": 1024
|
3 |
+
}
|
4 |
+
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|