mrovera commited on
Commit
12c487d
1 Parent(s): 530b7a1

Updated README

Browse files
Files changed (1) hide show
  1. README.md +107 -13
README.md CHANGED
@@ -2,46 +2,140 @@
2
  license: agpl-3.0
3
  language:
4
  - it
 
 
 
 
 
 
 
5
  ---
6
  # EventNet-ITA
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
10
 
11
  ## Model Details
12
 
13
  ### Model Description
14
 
15
- <!-- Provide a longer summary of what this model is. -->
16
 
17
- ### Model Sources
18
 
19
- <!-- Provide the basic links for the model. -->
20
 
21
- ## Uses
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
 
24
- ### Direct Use
25
 
26
- Multi-label text classification of Italian legislative acts.
 
 
 
 
 
27
 
28
 
29
- ## Training Details
30
 
31
  ### Training Data
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Evaluation
35
 
 
36
 
37
- ### Results
 
 
 
 
 
 
38
 
39
 
40
- ## Citation
 
 
 
 
 
 
41
 
42
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
43
 
44
- **BibTeX:**
45
- ```
46
 
 
 
 
 
 
 
 
 
 
 
 
47
  ```
 
2
  license: agpl-3.0
3
  language:
4
  - it
5
+ task_categories:
6
+ - token-classification
7
+ datasets:
8
+ - mrovera/eventnet-ita
9
+ tags:
10
+ - Frame Parsing
11
+ - Event Extraction
12
  ---
13
  # EventNet-ITA
14
 
15
+ The model is a full-text frame parser for events in Italian and it has been trained on [EventNet-ITA](https://huggingface.co/datasets/mrovera/eventnet-ita).
16
+ The model can be used for _full-text_ Frame Parsing and Event Extraction.
17
 
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
+ In its current version, EventNet-ITA is able to recognize and classifiy 205 semantic frames and their (specific) frame elements. The unit of analysis is the sentence.
24
 
 
25
 
26
+ ### Direct Use
27
 
28
+ Provided with an input sequence of tokens, the model labels each token with the corresponding frame and/or frame element label(s).
29
+ ```
30
+ La B-ENTITY*BEING_LOCATED|B-THEME*CONQUERING
31
+ cittadina I-ENTITY*BEING_LOCATED|I-THEME*CONQUERING
32
+ , O
33
+ posta B-BEING_LOCATED
34
+ a B-RELATIVE_LOCATION*BEING_LOCATED
35
+ est I-RELATIVE_LOCATION*BEING_LOCATED
36
+ del I-RELATIVE_LOCATION*BEING_LOCATED
37
+ corso I-RELATIVE_LOCATION*BEING_LOCATED
38
+ d' I-RELATIVE_LOCATION*BEING_LOCATED
39
+ acqua I-RELATIVE_LOCATION*BEING_LOCATED
40
+ , O
41
+ venne O
42
+ conquistata B-CONQUERING
43
+ , O
44
+ ma O
45
+ il B-EXPLOSIVE*DETONATE_EXPLOSIVE
46
+ ponte I-EXPLOSIVE*DETONATE_EXPLOSIVE
47
+ sul I-EXPLOSIVE*DETONATE_EXPLOSIVE
48
+ fiume I-EXPLOSIVE*DETONATE_EXPLOSIVE
49
+ era O
50
+ già O
51
+ stato O
52
+ fatto B-DETONATE_EXPLOSIVE
53
+ saltare I-DETONATE_EXPLOSIVE
54
+ regolarmente O
55
+ dai B-AGENT*DETONATE_EXPLOSIVE
56
+ genieri I-AGENT*DETONATE_EXPLOSIVE
57
+ francesi I-AGENT*DETONATE_EXPLOSIVE
58
+ . O
59
+ ```
60
 
61
 
62
+ ## Training Details
63
 
64
+ The model has been trained using [MaChAmp](https://github.com/machamp-nlp/machamp), a Python tookit supporting a variety of NLP tasks, by fine-tuning [this Italian BERT pretrained model](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased).
65
+ Training hyperparameters:
66
+ - Batch size: 64
67
+ - Learning rate: 1.5e-3
68
+
69
+ All other hyperparameters have been left unchanged w.r.t. the default MaChAmp configuration for the multi-sequential token classification task.
70
 
71
 
 
72
 
73
  ### Training Data
74
 
75
+ Please refer to the [dataset repo](https://huggingface.co/datasets/mrovera/eventnet-ita).
76
+
77
+
78
+ ### Model Re-training
79
+
80
+ In order to re-train the model, download the [dataset](https://huggingface.co/datasets/mrovera/eventnet-ita) and follow the instructions for training a [multiseq task](https://github.com/machamp-nlp/machamp/blob/master/docs/multiseq.md) in MaChAmp.
81
+
82
+
83
+ ### Inference
84
+
85
+ EventNet-ITA's model can be used for Frame Parsing on new texts.
86
+ In order to do so, you have to follow a few simple steps.
87
+ 1. Clone the github repo: `git clone https://github.com/machamp-nlp/machamp.git`
88
+ 2. Download EventNet-ITA's model from this repo (450 MB) and move it into the `machamp` folder (where is up to you, by default MaChAmp saves trained models in the logs folder)
89
+ 3. Save the data you want to use for prediction in a two-column tsv file, one word per line, with a placeholder in column 1, each sentence separated by a blank line (without placeholder), like this:
90
+ ```
91
+ This _
92
+ is _
93
+ the _
94
+ first _
95
+ sentence _
96
+ . _
97
+
98
+ This _
99
+ is _
100
+ the _
101
+ second _
102
+ one _
103
+ . _
104
+ ```
105
+ 4. Follow the instruction for predicting with [MaChAmp](https://github.com/machamp-nlp/machamp) (see section "Prediction") using a fine-tuned model.
106
 
107
  ## Evaluation
108
 
109
+ The model has been evaluated on three folds, each time with a stratified split of the dataset, with a 80/10/10 train/dev/test ratio. Please see the paper for further details. Hereafter we report the synthetic values obtained by averaging the Precision, Recall and F1-score values of the three splits.
110
 
111
+ **Token-based** (**_relaxed_**) performance:
112
+ | | P | R | F1 |
113
+ |----------------------------|--------|---------|---------|
114
+ |Frames | 0.904 | 0.914 | **0.907** |
115
+ |Frames (weighted) | 0.909 | 0.919 | 0.913 |
116
+ |Frame Elements | 0.841 | 0.724 | **0.761** |
117
+ |Frames Elements (weighted) | 0.850 | 0.779 | 0.804 |
118
 
119
 
120
+ **Span-based** (**_strict_**) performance:
121
+ | | P | R | F1 |
122
+ |----------------------------|--------|---------|--------|
123
+ |Frames | 0.906 | 0.899 | **0.901** |
124
+ |Frames (weighted) | 0.909 | 0.903 | 0.905 |
125
+ |Frame Elements | 0.829 | 0.666 | **0.724** |
126
+ |Frames Elements (weighted) | 0.853 | 0.711 | 0.768 |
127
 
 
128
 
 
 
129
 
130
+ ### Citation Information
131
+
132
+ If you use EventNet-ITA, please cite the following paper:
133
+
134
+ ```
135
+ @article{rovera2023eventnet,
136
+ title={EventNet-ITA: Italian Frame Parsing for Events},
137
+ author={Rovera, Marco},
138
+ journal={arXiv preprint arXiv:2305.10892},
139
+ year={2023}
140
+ }
141
  ```