julien-c HF staff commited on
Commit
5bd796f
1 Parent(s): 37261dd

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/mrm8488/xlm-multi-finetuned-xquadv1/README.md

Files changed (1) hide show
  1. README.md +123 -0
README.md ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: multilingual
3
+ thumbnail:
4
+ ---
5
+
6
+ # [XLM](https://github.com/facebookresearch/XLM/) (multilingual version) fine-tuned for multilingual Q&A
7
+
8
+ Released from `Facebook` together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau and fine-tuned on [XQuAD](https://github.com/deepmind/xquad) for multilingual (`11 different languages`) **Q&A** downstream task.
9
+
10
+ ## Details of the language model('xlm-mlm-100-1280')
11
+
12
+ [Language model](https://github.com/facebookresearch/XLM/#ii-cross-lingual-language-model-pretraining-xlm)
13
+
14
+ | Languages
15
+ | --------- |
16
+ | 100 |
17
+
18
+ It includes the following languages:
19
+
20
+ <details>
21
+ en-es-fr-de-zh-ru-pt-it-ar-ja-id-tr-nl-pl-simple-fa-vi-sv-ko-he-ro-no-hi-uk-cs-fi-hu-th-da-ca-el-bg-sr-ms-bn-hr-sl-zh_yue-az-sk-eo-ta-sh-lt-et-ml-la-bs-sq-arz-af-ka-mr-eu-tl-ang-gl-nn-ur-kk-be-hy-te-lv-mk-zh_classical-als-is-wuu-my-sco-mn-ceb-ast-cy-kn-br-an-gu-bar-uz-lb-ne-si-war-jv-ga-zh_min_nan-oc-ku-sw-nds-ckb-ia-yi-fy-scn-gan-tt-am
22
+ </details>
23
+
24
+ ## Details of the downstream task (multilingual Q&A) - Dataset
25
+
26
+ Deepmind [XQuAD](https://github.com/deepmind/xquad)
27
+
28
+ Languages covered:
29
+
30
+ - Arabic: `ar`
31
+ - German: `de`
32
+ - Greek: `el`
33
+ - English: `en`
34
+ - Spanish: `es`
35
+ - Hindi: `hi`
36
+ - Russian: `ru`
37
+ - Thai: `th`
38
+ - Turkish: `tr`
39
+ - Vietnamese: `vi`
40
+ - Chinese: `zh`
41
+
42
+ As the dataset is based on SQuAD v1.1, there are no unanswerable questions in the data. We chose this
43
+ setting so that models can focus on cross-lingual transfer.
44
+
45
+ We show the average number of tokens per paragraph, question, and answer for each language in the
46
+ table below. The statistics were obtained using [Jieba](https://github.com/fxsjy/jieba) for Chinese
47
+ and the [Moses tokenizer](https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl)
48
+ for the other languages.
49
+
50
+ | | en | es | de | el | ru | tr | ar | vi | th | zh | hi |
51
+ | --------- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
52
+ | Paragraph | 142.4 | 160.7 | 139.5 | 149.6 | 133.9 | 126.5 | 128.2 | 191.2 | 158.7 | 147.6 | 232.4 |
53
+ | Question | 11.5 | 13.4 | 11.0 | 11.7 | 10.0 | 9.8 | 10.7 | 14.8 | 11.5 | 10.5 | 18.7 |
54
+ | Answer | 3.1 | 3.6 | 3.0 | 3.3 | 3.1 | 3.1 | 3.1 | 4.5 | 4.1 | 3.5 | 5.6 |
55
+
56
+ Citation:
57
+
58
+ <details>
59
+
60
+ ```bibtex
61
+ @article{Artetxe:etal:2019,
62
+ author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama},
63
+ title = {On the cross-lingual transferability of monolingual representations},
64
+ journal = {CoRR},
65
+ volume = {abs/1910.11856},
66
+ year = {2019},
67
+ archivePrefix = {arXiv},
68
+ eprint = {1910.11856}
69
+ }
70
+ ```
71
+
72
+ </details>
73
+
74
+ As XQuAD is just an evaluation dataset, I used Data augmentation techniques (scraping, neural machine translation, etc) to obtain more samples and split the dataset in order to have a train and test set. The test set was created in a way that contains the same number of samples for each language. Finally, I got:
75
+
76
+ | Dataset | # samples |
77
+ | ----------- | --------- |
78
+ | XQUAD train | 50 K |
79
+ | XQUAD test | 8 K |
80
+
81
+ ## Model training
82
+
83
+ The model was trained on a Tesla P100 GPU and 25GB of RAM.
84
+ The script for fine tuning can be found [here](https://github.com/huggingface/transformers/blob/master/examples/distillation/run_squad_w_distillation.py)
85
+
86
+
87
+ ## Model in action
88
+
89
+ Fast usage with **pipelines**:
90
+
91
+ ```python
92
+ from transformers import pipeline
93
+
94
+ qa_pipeline = pipeline(
95
+ "question-answering",
96
+ model="mrm8488/xlm-multi-finetuned-xquadv1",
97
+ tokenizer="mrm8488/xlm-multi-finetuned-xquadv1"
98
+ )
99
+
100
+ # English
101
+ qa_pipeline({
102
+ 'context': "Manuel Romero has been working hardly in the repository hugginface/transformers lately",
103
+ 'question': "Who has been working hard for hugginface/transformers lately?"
104
+ })
105
+
106
+ #Output: {'answer': 'Manuel', 'end': 6, 'score': 8.531880747878265e-05, 'start': 0}
107
+
108
+ # Russian
109
+ qa_pipeline({
110
+ 'context': "Мануэль Ромеро в последнее время почти не работал в репозитории hugginface / transformers",
111
+ 'question': "Кто в последнее время усердно работал над обнимашками / трансформерами?"
112
+
113
+ })
114
+
115
+ #Output: {'answer': 'работал в репозитории hugginface /','end': 76, 'score': 0.00012340750456964894, 'start': 42}
116
+ ```
117
+ Try it on a Colab (*Do not forget to change the model and tokenizer path in the Colab if necessary*):
118
+
119
+ <a href="https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/Try_mrm8488_xquad_finetuned_uncased_model.ipynb" target="_parent"><img src="https://camo.githubusercontent.com/52feade06f2fecbf006889a904d221e6a730c194/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667" alt="Open In Colab" data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg"></a>
120
+
121
+ > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
122
+
123
+ > Made with <span style="color: #e25555;">&hearts;</span> in Spain