Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +1209 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:1K<n<10K
|
9 |
+
- loss:MatryoshkaLoss
|
10 |
+
- loss:CoSENTLoss
|
11 |
+
base_model: intfloat/multilingual-e5-large
|
12 |
+
metrics:
|
13 |
+
- pearson_cosine
|
14 |
+
- spearman_cosine
|
15 |
+
- pearson_manhattan
|
16 |
+
- spearman_manhattan
|
17 |
+
- pearson_euclidean
|
18 |
+
- spearman_euclidean
|
19 |
+
- pearson_dot
|
20 |
+
- spearman_dot
|
21 |
+
- pearson_max
|
22 |
+
- spearman_max
|
23 |
+
widget:
|
24 |
+
- source_sentence: El hombre captura una pelota
|
25 |
+
sentences:
|
26 |
+
- Un hombre lanza una pelota en el aire.
|
27 |
+
- Un hombre está acompañando a una mujer en el camino.
|
28 |
+
- Dos mujeres están cantando una hermosa canción.
|
29 |
+
- source_sentence: La mujer está cortando papas.
|
30 |
+
sentences:
|
31 |
+
- Una mujer está cortando patatas.
|
32 |
+
- Los patos blancos se encuentran parados en el suelo.
|
33 |
+
- Hay una banda tocando en el escenario principal.
|
34 |
+
- source_sentence: Un hombre está buscando algo.
|
35 |
+
sentences:
|
36 |
+
- En un mercado de granjeros, se encuentra un hombre.
|
37 |
+
- Romney filmó en una reunión privada de financiadores
|
38 |
+
- Dos perros de color negro están jugando en la hierba.
|
39 |
+
- source_sentence: Un hombre saltando la cuerda.
|
40 |
+
sentences:
|
41 |
+
- Un hombre está saltando la cuerda.
|
42 |
+
- La capital de Siria fue golpeada por dos explosiones
|
43 |
+
- Los gatitos están comiendo de los platos.
|
44 |
+
- source_sentence: El avión está tocando tierra.
|
45 |
+
sentences:
|
46 |
+
- El avión animado se encuentra en proceso de aterrizaje.
|
47 |
+
- Un pequeño niño montado en un columpio en el parque.
|
48 |
+
- Una persona de sexo femenino está cortando una cebolla.
|
49 |
+
pipeline_tag: sentence-similarity
|
50 |
+
model-index:
|
51 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-large
|
52 |
+
results:
|
53 |
+
- task:
|
54 |
+
type: semantic-similarity
|
55 |
+
name: Semantic Similarity
|
56 |
+
dataset:
|
57 |
+
name: sts dev 768
|
58 |
+
type: sts-dev-768
|
59 |
+
metrics:
|
60 |
+
- type: pearson_cosine
|
61 |
+
value: 0.8382359637067547
|
62 |
+
name: Pearson Cosine
|
63 |
+
- type: spearman_cosine
|
64 |
+
value: 0.8429605562993187
|
65 |
+
name: Spearman Cosine
|
66 |
+
- type: pearson_manhattan
|
67 |
+
value: 0.8336600898033378
|
68 |
+
name: Pearson Manhattan
|
69 |
+
- type: spearman_manhattan
|
70 |
+
value: 0.8448900621318144
|
71 |
+
name: Spearman Manhattan
|
72 |
+
- type: pearson_euclidean
|
73 |
+
value: 0.8328580183902631
|
74 |
+
name: Pearson Euclidean
|
75 |
+
- type: spearman_euclidean
|
76 |
+
value: 0.8441561677427524
|
77 |
+
name: Spearman Euclidean
|
78 |
+
- type: pearson_dot
|
79 |
+
value: 0.8287262441829462
|
80 |
+
name: Pearson Dot
|
81 |
+
- type: spearman_dot
|
82 |
+
value: 0.8322746204974042
|
83 |
+
name: Spearman Dot
|
84 |
+
- type: pearson_max
|
85 |
+
value: 0.8382359637067547
|
86 |
+
name: Pearson Max
|
87 |
+
- type: spearman_max
|
88 |
+
value: 0.8448900621318144
|
89 |
+
name: Spearman Max
|
90 |
+
- task:
|
91 |
+
type: semantic-similarity
|
92 |
+
name: Semantic Similarity
|
93 |
+
dataset:
|
94 |
+
name: sts dev 512
|
95 |
+
type: sts-dev-512
|
96 |
+
metrics:
|
97 |
+
- type: pearson_cosine
|
98 |
+
value: 0.8334610747047482
|
99 |
+
name: Pearson Cosine
|
100 |
+
- type: spearman_cosine
|
101 |
+
value: 0.8405630189692351
|
102 |
+
name: Spearman Cosine
|
103 |
+
- type: pearson_manhattan
|
104 |
+
value: 0.8316848819512679
|
105 |
+
name: Pearson Manhattan
|
106 |
+
- type: spearman_manhattan
|
107 |
+
value: 0.8426142019940397
|
108 |
+
name: Spearman Manhattan
|
109 |
+
- type: pearson_euclidean
|
110 |
+
value: 0.8305903222472721
|
111 |
+
name: Pearson Euclidean
|
112 |
+
- type: spearman_euclidean
|
113 |
+
value: 0.8415256700272777
|
114 |
+
name: Spearman Euclidean
|
115 |
+
- type: pearson_dot
|
116 |
+
value: 0.8172993617433827
|
117 |
+
name: Pearson Dot
|
118 |
+
- type: spearman_dot
|
119 |
+
value: 0.823043401157181
|
120 |
+
name: Spearman Dot
|
121 |
+
- type: pearson_max
|
122 |
+
value: 0.8334610747047482
|
123 |
+
name: Pearson Max
|
124 |
+
- type: spearman_max
|
125 |
+
value: 0.8426142019940397
|
126 |
+
name: Spearman Max
|
127 |
+
- task:
|
128 |
+
type: semantic-similarity
|
129 |
+
name: Semantic Similarity
|
130 |
+
dataset:
|
131 |
+
name: sts dev 256
|
132 |
+
type: sts-dev-256
|
133 |
+
metrics:
|
134 |
+
- type: pearson_cosine
|
135 |
+
value: 0.8240056098321313
|
136 |
+
name: Pearson Cosine
|
137 |
+
- type: spearman_cosine
|
138 |
+
value: 0.8355774999921849
|
139 |
+
name: Spearman Cosine
|
140 |
+
- type: pearson_manhattan
|
141 |
+
value: 0.8261458415991961
|
142 |
+
name: Pearson Manhattan
|
143 |
+
- type: spearman_manhattan
|
144 |
+
value: 0.8355100986320139
|
145 |
+
name: Spearman Manhattan
|
146 |
+
- type: pearson_euclidean
|
147 |
+
value: 0.825647934422587
|
148 |
+
name: Pearson Euclidean
|
149 |
+
- type: spearman_euclidean
|
150 |
+
value: 0.8362336344962497
|
151 |
+
name: Spearman Euclidean
|
152 |
+
- type: pearson_dot
|
153 |
+
value: 0.7924886689283153
|
154 |
+
name: Pearson Dot
|
155 |
+
- type: spearman_dot
|
156 |
+
value: 0.7992788592975302
|
157 |
+
name: Spearman Dot
|
158 |
+
- type: pearson_max
|
159 |
+
value: 0.8261458415991961
|
160 |
+
name: Pearson Max
|
161 |
+
- type: spearman_max
|
162 |
+
value: 0.8362336344962497
|
163 |
+
name: Spearman Max
|
164 |
+
- task:
|
165 |
+
type: semantic-similarity
|
166 |
+
name: Semantic Similarity
|
167 |
+
dataset:
|
168 |
+
name: sts dev 128
|
169 |
+
type: sts-dev-128
|
170 |
+
metrics:
|
171 |
+
- type: pearson_cosine
|
172 |
+
value: 0.8098656853945027
|
173 |
+
name: Pearson Cosine
|
174 |
+
- type: spearman_cosine
|
175 |
+
value: 0.8304511476467773
|
176 |
+
name: Spearman Cosine
|
177 |
+
- type: pearson_manhattan
|
178 |
+
value: 0.8208946291392102
|
179 |
+
name: Pearson Manhattan
|
180 |
+
- type: spearman_manhattan
|
181 |
+
value: 0.8308359029901535
|
182 |
+
name: Spearman Manhattan
|
183 |
+
- type: pearson_euclidean
|
184 |
+
value: 0.8195023110971954
|
185 |
+
name: Pearson Euclidean
|
186 |
+
- type: spearman_euclidean
|
187 |
+
value: 0.8302481276550623
|
188 |
+
name: Spearman Euclidean
|
189 |
+
- type: pearson_dot
|
190 |
+
value: 0.7412744037070784
|
191 |
+
name: Pearson Dot
|
192 |
+
- type: spearman_dot
|
193 |
+
value: 0.7489986968697009
|
194 |
+
name: Spearman Dot
|
195 |
+
- type: pearson_max
|
196 |
+
value: 0.8208946291392102
|
197 |
+
name: Pearson Max
|
198 |
+
- type: spearman_max
|
199 |
+
value: 0.8308359029901535
|
200 |
+
name: Spearman Max
|
201 |
+
- task:
|
202 |
+
type: semantic-similarity
|
203 |
+
name: Semantic Similarity
|
204 |
+
dataset:
|
205 |
+
name: sts dev 64
|
206 |
+
type: sts-dev-64
|
207 |
+
metrics:
|
208 |
+
- type: pearson_cosine
|
209 |
+
value: 0.7777717898212414
|
210 |
+
name: Pearson Cosine
|
211 |
+
- type: spearman_cosine
|
212 |
+
value: 0.8152005256760807
|
213 |
+
name: Spearman Cosine
|
214 |
+
- type: pearson_manhattan
|
215 |
+
value: 0.8007095698339157
|
216 |
+
name: Pearson Manhattan
|
217 |
+
- type: spearman_manhattan
|
218 |
+
value: 0.8116493253806699
|
219 |
+
name: Spearman Manhattan
|
220 |
+
- type: pearson_euclidean
|
221 |
+
value: 0.8000905317852872
|
222 |
+
name: Pearson Euclidean
|
223 |
+
- type: spearman_euclidean
|
224 |
+
value: 0.8110794468804238
|
225 |
+
name: Spearman Euclidean
|
226 |
+
- type: pearson_dot
|
227 |
+
value: 0.6540905690432955
|
228 |
+
name: Pearson Dot
|
229 |
+
- type: spearman_dot
|
230 |
+
value: 0.6589924104221199
|
231 |
+
name: Spearman Dot
|
232 |
+
- type: pearson_max
|
233 |
+
value: 0.8007095698339157
|
234 |
+
name: Pearson Max
|
235 |
+
- type: spearman_max
|
236 |
+
value: 0.8152005256760807
|
237 |
+
name: Spearman Max
|
238 |
+
- task:
|
239 |
+
type: semantic-similarity
|
240 |
+
name: Semantic Similarity
|
241 |
+
dataset:
|
242 |
+
name: sts dev 32
|
243 |
+
type: sts-dev-32
|
244 |
+
metrics:
|
245 |
+
- type: pearson_cosine
|
246 |
+
value: 0.7276908730898617
|
247 |
+
name: Pearson Cosine
|
248 |
+
- type: spearman_cosine
|
249 |
+
value: 0.7805691037554072
|
250 |
+
name: Spearman Cosine
|
251 |
+
- type: pearson_manhattan
|
252 |
+
value: 0.7659952363354546
|
253 |
+
name: Pearson Manhattan
|
254 |
+
- type: spearman_manhattan
|
255 |
+
value: 0.7751944660837697
|
256 |
+
name: Spearman Manhattan
|
257 |
+
- type: pearson_euclidean
|
258 |
+
value: 0.7674462214503804
|
259 |
+
name: Pearson Euclidean
|
260 |
+
- type: spearman_euclidean
|
261 |
+
value: 0.7773298298599879
|
262 |
+
name: Spearman Euclidean
|
263 |
+
- type: pearson_dot
|
264 |
+
value: 0.5395044219284906
|
265 |
+
name: Pearson Dot
|
266 |
+
- type: spearman_dot
|
267 |
+
value: 0.5341543426421572
|
268 |
+
name: Spearman Dot
|
269 |
+
- type: pearson_max
|
270 |
+
value: 0.7674462214503804
|
271 |
+
name: Pearson Max
|
272 |
+
- type: spearman_max
|
273 |
+
value: 0.7805691037554072
|
274 |
+
name: Spearman Max
|
275 |
+
- task:
|
276 |
+
type: semantic-similarity
|
277 |
+
name: Semantic Similarity
|
278 |
+
dataset:
|
279 |
+
name: sts dev 16
|
280 |
+
type: sts-dev-16
|
281 |
+
metrics:
|
282 |
+
- type: pearson_cosine
|
283 |
+
value: 0.6737235484120327
|
284 |
+
name: Pearson Cosine
|
285 |
+
- type: spearman_cosine
|
286 |
+
value: 0.7425360948217027
|
287 |
+
name: Spearman Cosine
|
288 |
+
- type: pearson_manhattan
|
289 |
+
value: 0.7187007732867645
|
290 |
+
name: Pearson Manhattan
|
291 |
+
- type: spearman_manhattan
|
292 |
+
value: 0.7279621825071231
|
293 |
+
name: Spearman Manhattan
|
294 |
+
- type: pearson_euclidean
|
295 |
+
value: 0.7234911258158329
|
296 |
+
name: Pearson Euclidean
|
297 |
+
- type: spearman_euclidean
|
298 |
+
value: 0.7374355146279606
|
299 |
+
name: Spearman Euclidean
|
300 |
+
- type: pearson_dot
|
301 |
+
value: 0.44701957007430754
|
302 |
+
name: Pearson Dot
|
303 |
+
- type: spearman_dot
|
304 |
+
value: 0.44243975098384164
|
305 |
+
name: Spearman Dot
|
306 |
+
- type: pearson_max
|
307 |
+
value: 0.7234911258158329
|
308 |
+
name: Pearson Max
|
309 |
+
- type: spearman_max
|
310 |
+
value: 0.7425360948217027
|
311 |
+
name: Spearman Max
|
312 |
+
- task:
|
313 |
+
type: semantic-similarity
|
314 |
+
name: Semantic Similarity
|
315 |
+
dataset:
|
316 |
+
name: sts test 768
|
317 |
+
type: sts-test-768
|
318 |
+
metrics:
|
319 |
+
- type: pearson_cosine
|
320 |
+
value: 0.8637130740455785
|
321 |
+
name: Pearson Cosine
|
322 |
+
- type: spearman_cosine
|
323 |
+
value: 0.8774757245850818
|
324 |
+
name: Spearman Cosine
|
325 |
+
- type: pearson_manhattan
|
326 |
+
value: 0.8739327947840198
|
327 |
+
name: Pearson Manhattan
|
328 |
+
- type: spearman_manhattan
|
329 |
+
value: 0.8771247494149252
|
330 |
+
name: Spearman Manhattan
|
331 |
+
- type: pearson_euclidean
|
332 |
+
value: 0.8742964420051067
|
333 |
+
name: Pearson Euclidean
|
334 |
+
- type: spearman_euclidean
|
335 |
+
value: 0.8774039769000851
|
336 |
+
name: Spearman Euclidean
|
337 |
+
- type: pearson_dot
|
338 |
+
value: 0.8587248460103846
|
339 |
+
name: Pearson Dot
|
340 |
+
- type: spearman_dot
|
341 |
+
value: 0.8692624735733635
|
342 |
+
name: Spearman Dot
|
343 |
+
- type: pearson_max
|
344 |
+
value: 0.8742964420051067
|
345 |
+
name: Pearson Max
|
346 |
+
- type: spearman_max
|
347 |
+
value: 0.8774757245850818
|
348 |
+
name: Spearman Max
|
349 |
+
- task:
|
350 |
+
type: semantic-similarity
|
351 |
+
name: Semantic Similarity
|
352 |
+
dataset:
|
353 |
+
name: sts test 512
|
354 |
+
type: sts-test-512
|
355 |
+
metrics:
|
356 |
+
- type: pearson_cosine
|
357 |
+
value: 0.8608902316971913
|
358 |
+
name: Pearson Cosine
|
359 |
+
- type: spearman_cosine
|
360 |
+
value: 0.8761454408181157
|
361 |
+
name: Spearman Cosine
|
362 |
+
- type: pearson_manhattan
|
363 |
+
value: 0.8723366100239835
|
364 |
+
name: Pearson Manhattan
|
365 |
+
- type: spearman_manhattan
|
366 |
+
value: 0.8755119028724399
|
367 |
+
name: Spearman Manhattan
|
368 |
+
- type: pearson_euclidean
|
369 |
+
value: 0.8727143818945785
|
370 |
+
name: Pearson Euclidean
|
371 |
+
- type: spearman_euclidean
|
372 |
+
value: 0.8758699632438892
|
373 |
+
name: Spearman Euclidean
|
374 |
+
- type: pearson_dot
|
375 |
+
value: 0.8498181878456328
|
376 |
+
name: Pearson Dot
|
377 |
+
- type: spearman_dot
|
378 |
+
value: 0.8568165420931783
|
379 |
+
name: Spearman Dot
|
380 |
+
- type: pearson_max
|
381 |
+
value: 0.8727143818945785
|
382 |
+
name: Pearson Max
|
383 |
+
- type: spearman_max
|
384 |
+
value: 0.8761454408181157
|
385 |
+
name: Spearman Max
|
386 |
+
- task:
|
387 |
+
type: semantic-similarity
|
388 |
+
name: Semantic Similarity
|
389 |
+
dataset:
|
390 |
+
name: sts test 256
|
391 |
+
type: sts-test-256
|
392 |
+
metrics:
|
393 |
+
- type: pearson_cosine
|
394 |
+
value: 0.8546354043013908
|
395 |
+
name: Pearson Cosine
|
396 |
+
- type: spearman_cosine
|
397 |
+
value: 0.871536658256446
|
398 |
+
name: Spearman Cosine
|
399 |
+
- type: pearson_manhattan
|
400 |
+
value: 0.8697716394077537
|
401 |
+
name: Pearson Manhattan
|
402 |
+
- type: spearman_manhattan
|
403 |
+
value: 0.8737030599161743
|
404 |
+
name: Spearman Manhattan
|
405 |
+
- type: pearson_euclidean
|
406 |
+
value: 0.86989853825415
|
407 |
+
name: Pearson Euclidean
|
408 |
+
- type: spearman_euclidean
|
409 |
+
value: 0.8736845554686979
|
410 |
+
name: Spearman Euclidean
|
411 |
+
- type: pearson_dot
|
412 |
+
value: 0.8131428680674924
|
413 |
+
name: Pearson Dot
|
414 |
+
- type: spearman_dot
|
415 |
+
value: 0.8076436370339797
|
416 |
+
name: Spearman Dot
|
417 |
+
- type: pearson_max
|
418 |
+
value: 0.86989853825415
|
419 |
+
name: Pearson Max
|
420 |
+
- type: spearman_max
|
421 |
+
value: 0.8737030599161743
|
422 |
+
name: Spearman Max
|
423 |
+
- task:
|
424 |
+
type: semantic-similarity
|
425 |
+
name: Semantic Similarity
|
426 |
+
dataset:
|
427 |
+
name: sts test 128
|
428 |
+
type: sts-test-128
|
429 |
+
metrics:
|
430 |
+
- type: pearson_cosine
|
431 |
+
value: 0.8387977115140051
|
432 |
+
name: Pearson Cosine
|
433 |
+
- type: spearman_cosine
|
434 |
+
value: 0.8645489592292456
|
435 |
+
name: Spearman Cosine
|
436 |
+
- type: pearson_manhattan
|
437 |
+
value: 0.8611375341227384
|
438 |
+
name: Pearson Manhattan
|
439 |
+
- type: spearman_manhattan
|
440 |
+
value: 0.8667215229295422
|
441 |
+
name: Spearman Manhattan
|
442 |
+
- type: pearson_euclidean
|
443 |
+
value: 0.862154474303328
|
444 |
+
name: Pearson Euclidean
|
445 |
+
- type: spearman_euclidean
|
446 |
+
value: 0.8680162798983022
|
447 |
+
name: Spearman Euclidean
|
448 |
+
- type: pearson_dot
|
449 |
+
value: 0.7492475609746636
|
450 |
+
name: Pearson Dot
|
451 |
+
- type: spearman_dot
|
452 |
+
value: 0.7363955675375832
|
453 |
+
name: Spearman Dot
|
454 |
+
- type: pearson_max
|
455 |
+
value: 0.862154474303328
|
456 |
+
name: Pearson Max
|
457 |
+
- type: spearman_max
|
458 |
+
value: 0.8680162798983022
|
459 |
+
name: Spearman Max
|
460 |
+
- task:
|
461 |
+
type: semantic-similarity
|
462 |
+
name: Semantic Similarity
|
463 |
+
dataset:
|
464 |
+
name: sts test 64
|
465 |
+
type: sts-test-64
|
466 |
+
metrics:
|
467 |
+
- type: pearson_cosine
|
468 |
+
value: 0.8168102869303625
|
469 |
+
name: Pearson Cosine
|
470 |
+
- type: spearman_cosine
|
471 |
+
value: 0.8585329796388539
|
472 |
+
name: Spearman Cosine
|
473 |
+
- type: pearson_manhattan
|
474 |
+
value: 0.8518107264951738
|
475 |
+
name: Pearson Manhattan
|
476 |
+
- type: spearman_manhattan
|
477 |
+
value: 0.8606717941407515
|
478 |
+
name: Spearman Manhattan
|
479 |
+
- type: pearson_euclidean
|
480 |
+
value: 0.8533959511853835
|
481 |
+
name: Pearson Euclidean
|
482 |
+
- type: spearman_euclidean
|
483 |
+
value: 0.8623753165991692
|
484 |
+
name: Spearman Euclidean
|
485 |
+
- type: pearson_dot
|
486 |
+
value: 0.6646337116783656
|
487 |
+
name: Pearson Dot
|
488 |
+
- type: spearman_dot
|
489 |
+
value: 0.6473141838302237
|
490 |
+
name: Spearman Dot
|
491 |
+
- type: pearson_max
|
492 |
+
value: 0.8533959511853835
|
493 |
+
name: Pearson Max
|
494 |
+
- type: spearman_max
|
495 |
+
value: 0.8623753165991692
|
496 |
+
name: Spearman Max
|
497 |
+
- task:
|
498 |
+
type: semantic-similarity
|
499 |
+
name: Semantic Similarity
|
500 |
+
dataset:
|
501 |
+
name: sts test 32
|
502 |
+
type: sts-test-32
|
503 |
+
metrics:
|
504 |
+
- type: pearson_cosine
|
505 |
+
value: 0.7813945227753345
|
506 |
+
name: Pearson Cosine
|
507 |
+
- type: spearman_cosine
|
508 |
+
value: 0.8424823964509079
|
509 |
+
name: Spearman Cosine
|
510 |
+
- type: pearson_manhattan
|
511 |
+
value: 0.8315336527432531
|
512 |
+
name: Pearson Manhattan
|
513 |
+
- type: spearman_manhattan
|
514 |
+
value: 0.8431756901550471
|
515 |
+
name: Spearman Manhattan
|
516 |
+
- type: pearson_euclidean
|
517 |
+
value: 0.8345328653107531
|
518 |
+
name: Pearson Euclidean
|
519 |
+
- type: spearman_euclidean
|
520 |
+
value: 0.8466076672836096
|
521 |
+
name: Spearman Euclidean
|
522 |
+
- type: pearson_dot
|
523 |
+
value: 0.5520860449837447
|
524 |
+
name: Pearson Dot
|
525 |
+
- type: spearman_dot
|
526 |
+
value: 0.5319238671245338
|
527 |
+
name: Spearman Dot
|
528 |
+
- type: pearson_max
|
529 |
+
value: 0.8345328653107531
|
530 |
+
name: Pearson Max
|
531 |
+
- type: spearman_max
|
532 |
+
value: 0.8466076672836096
|
533 |
+
name: Spearman Max
|
534 |
+
- task:
|
535 |
+
type: semantic-similarity
|
536 |
+
name: Semantic Similarity
|
537 |
+
dataset:
|
538 |
+
name: sts test 16
|
539 |
+
type: sts-test-16
|
540 |
+
metrics:
|
541 |
+
- type: pearson_cosine
|
542 |
+
value: 0.7198004009567176
|
543 |
+
name: Pearson Cosine
|
544 |
+
- type: spearman_cosine
|
545 |
+
value: 0.8072120165730962
|
546 |
+
name: Spearman Cosine
|
547 |
+
- type: pearson_manhattan
|
548 |
+
value: 0.7805727606105963
|
549 |
+
name: Pearson Manhattan
|
550 |
+
- type: spearman_manhattan
|
551 |
+
value: 0.7997833060148871
|
552 |
+
name: Spearman Manhattan
|
553 |
+
- type: pearson_euclidean
|
554 |
+
value: 0.7879106231813758
|
555 |
+
name: Pearson Euclidean
|
556 |
+
- type: spearman_euclidean
|
557 |
+
value: 0.8090073332632988
|
558 |
+
name: Spearman Euclidean
|
559 |
+
- type: pearson_dot
|
560 |
+
value: 0.44957276876149327
|
561 |
+
name: Pearson Dot
|
562 |
+
- type: spearman_dot
|
563 |
+
value: 0.4411623904572447
|
564 |
+
name: Spearman Dot
|
565 |
+
- type: pearson_max
|
566 |
+
value: 0.7879106231813758
|
567 |
+
name: Pearson Max
|
568 |
+
- type: spearman_max
|
569 |
+
value: 0.8090073332632988
|
570 |
+
name: Spearman Max
|
571 |
+
---
|
572 |
+
|
573 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large
|
574 |
+
|
575 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the clibrain/stsb_multi_es_aug_gpt3.5-turbo_2 dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
576 |
+
|
577 |
+
## Model Details
|
578 |
+
|
579 |
+
### Model Description
|
580 |
+
- **Model Type:** Sentence Transformer
|
581 |
+
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
|
582 |
+
- **Maximum Sequence Length:** 512 tokens
|
583 |
+
- **Output Dimensionality:** 1024 tokens
|
584 |
+
- **Similarity Function:** Cosine Similarity
|
585 |
+
- **Training Dataset:**
|
586 |
+
- clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
|
587 |
+
<!-- - **Language:** Unknown -->
|
588 |
+
<!-- - **License:** Unknown -->
|
589 |
+
|
590 |
+
### Model Sources
|
591 |
+
|
592 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
593 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
594 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
595 |
+
|
596 |
+
### Full Model Architecture
|
597 |
+
|
598 |
+
```
|
599 |
+
SentenceTransformer(
|
600 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
601 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
602 |
+
(2): Normalize()
|
603 |
+
)
|
604 |
+
```
|
605 |
+
|
606 |
+
## Usage
|
607 |
+
|
608 |
+
### Direct Usage (Sentence Transformers)
|
609 |
+
|
610 |
+
First install the Sentence Transformers library:
|
611 |
+
|
612 |
+
```bash
|
613 |
+
pip install -U sentence-transformers
|
614 |
+
```
|
615 |
+
|
616 |
+
Then you can load this model and run inference.
|
617 |
+
```python
|
618 |
+
from sentence_transformers import SentenceTransformer
|
619 |
+
|
620 |
+
# Download from the 🤗 Hub
|
621 |
+
model = SentenceTransformer("mrm8488/multilingual-e5-large-ft-sts-spanish-matryoshka-768-16-5e")
|
622 |
+
# Run inference
|
623 |
+
sentences = [
|
624 |
+
'El avión está tocando tierra.',
|
625 |
+
'El avión animado se encuentra en proceso de aterrizaje.',
|
626 |
+
'Un pequeño niño montado en un columpio en el parque.',
|
627 |
+
]
|
628 |
+
embeddings = model.encode(sentences)
|
629 |
+
print(embeddings.shape)
|
630 |
+
# [3, 1024]
|
631 |
+
|
632 |
+
# Get the similarity scores for the embeddings
|
633 |
+
similarities = model.similarity(embeddings, embeddings)
|
634 |
+
print(similarities.shape)
|
635 |
+
# [3, 3]
|
636 |
+
```
|
637 |
+
|
638 |
+
<!--
|
639 |
+
### Direct Usage (Transformers)
|
640 |
+
|
641 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
642 |
+
|
643 |
+
</details>
|
644 |
+
-->
|
645 |
+
|
646 |
+
<!--
|
647 |
+
### Downstream Usage (Sentence Transformers)
|
648 |
+
|
649 |
+
You can finetune this model on your own dataset.
|
650 |
+
|
651 |
+
<details><summary>Click to expand</summary>
|
652 |
+
|
653 |
+
</details>
|
654 |
+
-->
|
655 |
+
|
656 |
+
<!--
|
657 |
+
### Out-of-Scope Use
|
658 |
+
|
659 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
660 |
+
-->
|
661 |
+
|
662 |
+
## Evaluation
|
663 |
+
|
664 |
+
### Metrics
|
665 |
+
|
666 |
+
#### Semantic Similarity
|
667 |
+
* Dataset: `sts-dev-768`
|
668 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
669 |
+
|
670 |
+
| Metric | Value |
|
671 |
+
|:--------------------|:----------|
|
672 |
+
| pearson_cosine | 0.8382 |
|
673 |
+
| **spearman_cosine** | **0.843** |
|
674 |
+
| pearson_manhattan | 0.8337 |
|
675 |
+
| spearman_manhattan | 0.8449 |
|
676 |
+
| pearson_euclidean | 0.8329 |
|
677 |
+
| spearman_euclidean | 0.8442 |
|
678 |
+
| pearson_dot | 0.8287 |
|
679 |
+
| spearman_dot | 0.8323 |
|
680 |
+
| pearson_max | 0.8382 |
|
681 |
+
| spearman_max | 0.8449 |
|
682 |
+
|
683 |
+
#### Semantic Similarity
|
684 |
+
* Dataset: `sts-dev-512`
|
685 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
686 |
+
|
687 |
+
| Metric | Value |
|
688 |
+
|:--------------------|:-----------|
|
689 |
+
| pearson_cosine | 0.8335 |
|
690 |
+
| **spearman_cosine** | **0.8406** |
|
691 |
+
| pearson_manhattan | 0.8317 |
|
692 |
+
| spearman_manhattan | 0.8426 |
|
693 |
+
| pearson_euclidean | 0.8306 |
|
694 |
+
| spearman_euclidean | 0.8415 |
|
695 |
+
| pearson_dot | 0.8173 |
|
696 |
+
| spearman_dot | 0.823 |
|
697 |
+
| pearson_max | 0.8335 |
|
698 |
+
| spearman_max | 0.8426 |
|
699 |
+
|
700 |
+
#### Semantic Similarity
|
701 |
+
* Dataset: `sts-dev-256`
|
702 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
703 |
+
|
704 |
+
| Metric | Value |
|
705 |
+
|:--------------------|:-----------|
|
706 |
+
| pearson_cosine | 0.824 |
|
707 |
+
| **spearman_cosine** | **0.8356** |
|
708 |
+
| pearson_manhattan | 0.8261 |
|
709 |
+
| spearman_manhattan | 0.8355 |
|
710 |
+
| pearson_euclidean | 0.8256 |
|
711 |
+
| spearman_euclidean | 0.8362 |
|
712 |
+
| pearson_dot | 0.7925 |
|
713 |
+
| spearman_dot | 0.7993 |
|
714 |
+
| pearson_max | 0.8261 |
|
715 |
+
| spearman_max | 0.8362 |
|
716 |
+
|
717 |
+
#### Semantic Similarity
|
718 |
+
* Dataset: `sts-dev-128`
|
719 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
720 |
+
|
721 |
+
| Metric | Value |
|
722 |
+
|:--------------------|:-----------|
|
723 |
+
| pearson_cosine | 0.8099 |
|
724 |
+
| **spearman_cosine** | **0.8305** |
|
725 |
+
| pearson_manhattan | 0.8209 |
|
726 |
+
| spearman_manhattan | 0.8308 |
|
727 |
+
| pearson_euclidean | 0.8195 |
|
728 |
+
| spearman_euclidean | 0.8302 |
|
729 |
+
| pearson_dot | 0.7413 |
|
730 |
+
| spearman_dot | 0.749 |
|
731 |
+
| pearson_max | 0.8209 |
|
732 |
+
| spearman_max | 0.8308 |
|
733 |
+
|
734 |
+
#### Semantic Similarity
|
735 |
+
* Dataset: `sts-dev-64`
|
736 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
737 |
+
|
738 |
+
| Metric | Value |
|
739 |
+
|:--------------------|:-----------|
|
740 |
+
| pearson_cosine | 0.7778 |
|
741 |
+
| **spearman_cosine** | **0.8152** |
|
742 |
+
| pearson_manhattan | 0.8007 |
|
743 |
+
| spearman_manhattan | 0.8116 |
|
744 |
+
| pearson_euclidean | 0.8001 |
|
745 |
+
| spearman_euclidean | 0.8111 |
|
746 |
+
| pearson_dot | 0.6541 |
|
747 |
+
| spearman_dot | 0.659 |
|
748 |
+
| pearson_max | 0.8007 |
|
749 |
+
| spearman_max | 0.8152 |
|
750 |
+
|
751 |
+
#### Semantic Similarity
|
752 |
+
* Dataset: `sts-dev-32`
|
753 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
754 |
+
|
755 |
+
| Metric | Value |
|
756 |
+
|:--------------------|:-----------|
|
757 |
+
| pearson_cosine | 0.7277 |
|
758 |
+
| **spearman_cosine** | **0.7806** |
|
759 |
+
| pearson_manhattan | 0.766 |
|
760 |
+
| spearman_manhattan | 0.7752 |
|
761 |
+
| pearson_euclidean | 0.7674 |
|
762 |
+
| spearman_euclidean | 0.7773 |
|
763 |
+
| pearson_dot | 0.5395 |
|
764 |
+
| spearman_dot | 0.5342 |
|
765 |
+
| pearson_max | 0.7674 |
|
766 |
+
| spearman_max | 0.7806 |
|
767 |
+
|
768 |
+
#### Semantic Similarity
|
769 |
+
* Dataset: `sts-dev-16`
|
770 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
771 |
+
|
772 |
+
| Metric | Value |
|
773 |
+
|:--------------------|:-----------|
|
774 |
+
| pearson_cosine | 0.6737 |
|
775 |
+
| **spearman_cosine** | **0.7425** |
|
776 |
+
| pearson_manhattan | 0.7187 |
|
777 |
+
| spearman_manhattan | 0.728 |
|
778 |
+
| pearson_euclidean | 0.7235 |
|
779 |
+
| spearman_euclidean | 0.7374 |
|
780 |
+
| pearson_dot | 0.447 |
|
781 |
+
| spearman_dot | 0.4424 |
|
782 |
+
| pearson_max | 0.7235 |
|
783 |
+
| spearman_max | 0.7425 |
|
784 |
+
|
785 |
+
#### Semantic Similarity
|
786 |
+
* Dataset: `sts-test-768`
|
787 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
788 |
+
|
789 |
+
| Metric | Value |
|
790 |
+
|:--------------------|:-----------|
|
791 |
+
| pearson_cosine | 0.8637 |
|
792 |
+
| **spearman_cosine** | **0.8775** |
|
793 |
+
| pearson_manhattan | 0.8739 |
|
794 |
+
| spearman_manhattan | 0.8771 |
|
795 |
+
| pearson_euclidean | 0.8743 |
|
796 |
+
| spearman_euclidean | 0.8774 |
|
797 |
+
| pearson_dot | 0.8587 |
|
798 |
+
| spearman_dot | 0.8693 |
|
799 |
+
| pearson_max | 0.8743 |
|
800 |
+
| spearman_max | 0.8775 |
|
801 |
+
|
802 |
+
#### Semantic Similarity
|
803 |
+
* Dataset: `sts-test-512`
|
804 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
805 |
+
|
806 |
+
| Metric | Value |
|
807 |
+
|:--------------------|:-----------|
|
808 |
+
| pearson_cosine | 0.8609 |
|
809 |
+
| **spearman_cosine** | **0.8761** |
|
810 |
+
| pearson_manhattan | 0.8723 |
|
811 |
+
| spearman_manhattan | 0.8755 |
|
812 |
+
| pearson_euclidean | 0.8727 |
|
813 |
+
| spearman_euclidean | 0.8759 |
|
814 |
+
| pearson_dot | 0.8498 |
|
815 |
+
| spearman_dot | 0.8568 |
|
816 |
+
| pearson_max | 0.8727 |
|
817 |
+
| spearman_max | 0.8761 |
|
818 |
+
|
819 |
+
#### Semantic Similarity
|
820 |
+
* Dataset: `sts-test-256`
|
821 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
822 |
+
|
823 |
+
| Metric | Value |
|
824 |
+
|:--------------------|:-----------|
|
825 |
+
| pearson_cosine | 0.8546 |
|
826 |
+
| **spearman_cosine** | **0.8715** |
|
827 |
+
| pearson_manhattan | 0.8698 |
|
828 |
+
| spearman_manhattan | 0.8737 |
|
829 |
+
| pearson_euclidean | 0.8699 |
|
830 |
+
| spearman_euclidean | 0.8737 |
|
831 |
+
| pearson_dot | 0.8131 |
|
832 |
+
| spearman_dot | 0.8076 |
|
833 |
+
| pearson_max | 0.8699 |
|
834 |
+
| spearman_max | 0.8737 |
|
835 |
+
|
836 |
+
#### Semantic Similarity
|
837 |
+
* Dataset: `sts-test-128`
|
838 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
839 |
+
|
840 |
+
| Metric | Value |
|
841 |
+
|:--------------------|:-----------|
|
842 |
+
| pearson_cosine | 0.8388 |
|
843 |
+
| **spearman_cosine** | **0.8645** |
|
844 |
+
| pearson_manhattan | 0.8611 |
|
845 |
+
| spearman_manhattan | 0.8667 |
|
846 |
+
| pearson_euclidean | 0.8622 |
|
847 |
+
| spearman_euclidean | 0.868 |
|
848 |
+
| pearson_dot | 0.7492 |
|
849 |
+
| spearman_dot | 0.7364 |
|
850 |
+
| pearson_max | 0.8622 |
|
851 |
+
| spearman_max | 0.868 |
|
852 |
+
|
853 |
+
#### Semantic Similarity
|
854 |
+
* Dataset: `sts-test-64`
|
855 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
856 |
+
|
857 |
+
| Metric | Value |
|
858 |
+
|:--------------------|:-----------|
|
859 |
+
| pearson_cosine | 0.8168 |
|
860 |
+
| **spearman_cosine** | **0.8585** |
|
861 |
+
| pearson_manhattan | 0.8518 |
|
862 |
+
| spearman_manhattan | 0.8607 |
|
863 |
+
| pearson_euclidean | 0.8534 |
|
864 |
+
| spearman_euclidean | 0.8624 |
|
865 |
+
| pearson_dot | 0.6646 |
|
866 |
+
| spearman_dot | 0.6473 |
|
867 |
+
| pearson_max | 0.8534 |
|
868 |
+
| spearman_max | 0.8624 |
|
869 |
+
|
870 |
+
#### Semantic Similarity
|
871 |
+
* Dataset: `sts-test-32`
|
872 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
873 |
+
|
874 |
+
| Metric | Value |
|
875 |
+
|:--------------------|:-----------|
|
876 |
+
| pearson_cosine | 0.7814 |
|
877 |
+
| **spearman_cosine** | **0.8425** |
|
878 |
+
| pearson_manhattan | 0.8315 |
|
879 |
+
| spearman_manhattan | 0.8432 |
|
880 |
+
| pearson_euclidean | 0.8345 |
|
881 |
+
| spearman_euclidean | 0.8466 |
|
882 |
+
| pearson_dot | 0.5521 |
|
883 |
+
| spearman_dot | 0.5319 |
|
884 |
+
| pearson_max | 0.8345 |
|
885 |
+
| spearman_max | 0.8466 |
|
886 |
+
|
887 |
+
#### Semantic Similarity
|
888 |
+
* Dataset: `sts-test-16`
|
889 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
890 |
+
|
891 |
+
| Metric | Value |
|
892 |
+
|:--------------------|:-----------|
|
893 |
+
| pearson_cosine | 0.7198 |
|
894 |
+
| **spearman_cosine** | **0.8072** |
|
895 |
+
| pearson_manhattan | 0.7806 |
|
896 |
+
| spearman_manhattan | 0.7998 |
|
897 |
+
| pearson_euclidean | 0.7879 |
|
898 |
+
| spearman_euclidean | 0.809 |
|
899 |
+
| pearson_dot | 0.4496 |
|
900 |
+
| spearman_dot | 0.4412 |
|
901 |
+
| pearson_max | 0.7879 |
|
902 |
+
| spearman_max | 0.809 |
|
903 |
+
|
904 |
+
<!--
|
905 |
+
## Bias, Risks and Limitations
|
906 |
+
|
907 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
908 |
+
-->
|
909 |
+
|
910 |
+
<!--
|
911 |
+
### Recommendations
|
912 |
+
|
913 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
914 |
+
-->
|
915 |
+
|
916 |
+
## Training Details
|
917 |
+
|
918 |
+
### Training Dataset
|
919 |
+
|
920 |
+
#### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
|
921 |
+
|
922 |
+
* Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
|
923 |
+
* Size: 2,697 training samples
|
924 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
925 |
+
* Approximate statistics based on the first 1000 samples:
|
926 |
+
| | sentence1 | sentence2 | score |
|
927 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
928 |
+
| type | string | string | float |
|
929 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 22.25 tokens</li><li>max: 68 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 22.01 tokens</li><li>max: 79 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.67</li><li>max: 5.0</li></ul> |
|
930 |
+
* Samples:
|
931 |
+
| sentence1 | sentence2 | score |
|
932 |
+
|:------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------|
|
933 |
+
| <code>El pájaro de tamaño reducido se posó con delicadeza en una rama cubierta de escarcha.</code> | <code>Un ave de color amarillo descansaba tranquilamente en una rama.</code> | <code>3.200000047683716</code> |
|
934 |
+
| <code>Una chica está tocando la flauta en un parque.</code> | <code>Un grupo de músicos está tocando en un escenario al aire libre.</code> | <code>1.286</code> |
|
935 |
+
| <code>La aclamada escritora británica, Doris Lessing, galardonada con el premio Nobel, fallece</code> | <code>La destacada autora británica, Doris Lessing, reconocida con el prestigioso Premio Nobel, muere</code> | <code>4.199999809265137</code> |
|
936 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
937 |
+
```json
|
938 |
+
{
|
939 |
+
"loss": "CoSENTLoss",
|
940 |
+
"matryoshka_dims": [
|
941 |
+
768,
|
942 |
+
512,
|
943 |
+
256,
|
944 |
+
128,
|
945 |
+
64,
|
946 |
+
32,
|
947 |
+
16
|
948 |
+
],
|
949 |
+
"matryoshka_weights": [
|
950 |
+
1,
|
951 |
+
1,
|
952 |
+
1,
|
953 |
+
1,
|
954 |
+
1,
|
955 |
+
1,
|
956 |
+
1
|
957 |
+
],
|
958 |
+
"n_dims_per_step": -1
|
959 |
+
}
|
960 |
+
```
|
961 |
+
|
962 |
+
### Evaluation Dataset
|
963 |
+
|
964 |
+
#### clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
|
965 |
+
|
966 |
+
* Dataset: clibrain/stsb_multi_es_aug_gpt3.5-turbo_2
|
967 |
+
* Size: 697 evaluation samples
|
968 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
969 |
+
* Approximate statistics based on the first 1000 samples:
|
970 |
+
| | sentence1 | sentence2 | score |
|
971 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
972 |
+
| type | string | string | float |
|
973 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 22.76 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 22.26 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 2.3</li><li>max: 5.0</li></ul> |
|
974 |
+
* Samples:
|
975 |
+
| sentence1 | sentence2 | score |
|
976 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------|
|
977 |
+
| <code>Un incendio ocurrido en un hospital psiquiátrico ruso resultó en la trágica muerte de 38 personas.</code> | <code>Se teme que el incendio en un hospital psiquiátrico ruso cause la pérdida de la vida de 38 individuos.</code> | <code>4.199999809265137</code> |
|
978 |
+
| <code>"Street dijo que el otro individuo a veces se siente avergonzado de su fiesta, lo cual provoca risas en la multitud"</code> | <code>"A veces, el otro tipo se encuentra avergonzado de su fiesta y no se le puede culpar."</code> | <code>3.5</code> |
|
979 |
+
| <code>El veterano diplomático de Malasia tuvo un encuentro con Suu Kyi el miércoles en la casa del lago en Yangon donde permanece bajo arresto domiciliario.</code> | <code>Razali Ismail tuvo una reunión de 90 minutos con Suu Kyi, quien ganó el Premio Nobel de la Paz en 1991, en su casa del lago donde está recluida.</code> | <code>3.691999912261963</code> |
|
980 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
981 |
+
```json
|
982 |
+
{
|
983 |
+
"loss": "CoSENTLoss",
|
984 |
+
"matryoshka_dims": [
|
985 |
+
768,
|
986 |
+
512,
|
987 |
+
256,
|
988 |
+
128,
|
989 |
+
64,
|
990 |
+
32,
|
991 |
+
16
|
992 |
+
],
|
993 |
+
"matryoshka_weights": [
|
994 |
+
1,
|
995 |
+
1,
|
996 |
+
1,
|
997 |
+
1,
|
998 |
+
1,
|
999 |
+
1,
|
1000 |
+
1
|
1001 |
+
],
|
1002 |
+
"n_dims_per_step": -1
|
1003 |
+
}
|
1004 |
+
```
|
1005 |
+
|
1006 |
+
### Training Hyperparameters
|
1007 |
+
#### Non-Default Hyperparameters
|
1008 |
+
|
1009 |
+
- `eval_strategy`: steps
|
1010 |
+
- `per_device_train_batch_size`: 16
|
1011 |
+
- `per_device_eval_batch_size`: 16
|
1012 |
+
- `num_train_epochs`: 5
|
1013 |
+
- `warmup_ratio`: 0.1
|
1014 |
+
- `fp16`: True
|
1015 |
+
|
1016 |
+
#### All Hyperparameters
|
1017 |
+
<details><summary>Click to expand</summary>
|
1018 |
+
|
1019 |
+
- `overwrite_output_dir`: False
|
1020 |
+
- `do_predict`: False
|
1021 |
+
- `eval_strategy`: steps
|
1022 |
+
- `prediction_loss_only`: True
|
1023 |
+
- `per_device_train_batch_size`: 16
|
1024 |
+
- `per_device_eval_batch_size`: 16
|
1025 |
+
- `per_gpu_train_batch_size`: None
|
1026 |
+
- `per_gpu_eval_batch_size`: None
|
1027 |
+
- `gradient_accumulation_steps`: 1
|
1028 |
+
- `eval_accumulation_steps`: None
|
1029 |
+
- `learning_rate`: 5e-05
|
1030 |
+
- `weight_decay`: 0.0
|
1031 |
+
- `adam_beta1`: 0.9
|
1032 |
+
- `adam_beta2`: 0.999
|
1033 |
+
- `adam_epsilon`: 1e-08
|
1034 |
+
- `max_grad_norm`: 1.0
|
1035 |
+
- `num_train_epochs`: 5
|
1036 |
+
- `max_steps`: -1
|
1037 |
+
- `lr_scheduler_type`: linear
|
1038 |
+
- `lr_scheduler_kwargs`: {}
|
1039 |
+
- `warmup_ratio`: 0.1
|
1040 |
+
- `warmup_steps`: 0
|
1041 |
+
- `log_level`: passive
|
1042 |
+
- `log_level_replica`: warning
|
1043 |
+
- `log_on_each_node`: True
|
1044 |
+
- `logging_nan_inf_filter`: True
|
1045 |
+
- `save_safetensors`: True
|
1046 |
+
- `save_on_each_node`: False
|
1047 |
+
- `save_only_model`: False
|
1048 |
+
- `restore_callback_states_from_checkpoint`: False
|
1049 |
+
- `no_cuda`: False
|
1050 |
+
- `use_cpu`: False
|
1051 |
+
- `use_mps_device`: False
|
1052 |
+
- `seed`: 42
|
1053 |
+
- `data_seed`: None
|
1054 |
+
- `jit_mode_eval`: False
|
1055 |
+
- `use_ipex`: False
|
1056 |
+
- `bf16`: False
|
1057 |
+
- `fp16`: True
|
1058 |
+
- `fp16_opt_level`: O1
|
1059 |
+
- `half_precision_backend`: auto
|
1060 |
+
- `bf16_full_eval`: False
|
1061 |
+
- `fp16_full_eval`: False
|
1062 |
+
- `tf32`: None
|
1063 |
+
- `local_rank`: 0
|
1064 |
+
- `ddp_backend`: None
|
1065 |
+
- `tpu_num_cores`: None
|
1066 |
+
- `tpu_metrics_debug`: False
|
1067 |
+
- `debug`: []
|
1068 |
+
- `dataloader_drop_last`: False
|
1069 |
+
- `dataloader_num_workers`: 0
|
1070 |
+
- `dataloader_prefetch_factor`: None
|
1071 |
+
- `past_index`: -1
|
1072 |
+
- `disable_tqdm`: False
|
1073 |
+
- `remove_unused_columns`: True
|
1074 |
+
- `label_names`: None
|
1075 |
+
- `load_best_model_at_end`: False
|
1076 |
+
- `ignore_data_skip`: False
|
1077 |
+
- `fsdp`: []
|
1078 |
+
- `fsdp_min_num_params`: 0
|
1079 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
1080 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
1081 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
1082 |
+
- `deepspeed`: None
|
1083 |
+
- `label_smoothing_factor`: 0.0
|
1084 |
+
- `optim`: adamw_torch
|
1085 |
+
- `optim_args`: None
|
1086 |
+
- `adafactor`: False
|
1087 |
+
- `group_by_length`: False
|
1088 |
+
- `length_column_name`: length
|
1089 |
+
- `ddp_find_unused_parameters`: None
|
1090 |
+
- `ddp_bucket_cap_mb`: None
|
1091 |
+
- `ddp_broadcast_buffers`: False
|
1092 |
+
- `dataloader_pin_memory`: True
|
1093 |
+
- `dataloader_persistent_workers`: False
|
1094 |
+
- `skip_memory_metrics`: True
|
1095 |
+
- `use_legacy_prediction_loop`: False
|
1096 |
+
- `push_to_hub`: False
|
1097 |
+
- `resume_from_checkpoint`: None
|
1098 |
+
- `hub_model_id`: None
|
1099 |
+
- `hub_strategy`: every_save
|
1100 |
+
- `hub_private_repo`: False
|
1101 |
+
- `hub_always_push`: False
|
1102 |
+
- `gradient_checkpointing`: False
|
1103 |
+
- `gradient_checkpointing_kwargs`: None
|
1104 |
+
- `include_inputs_for_metrics`: False
|
1105 |
+
- `eval_do_concat_batches`: True
|
1106 |
+
- `fp16_backend`: auto
|
1107 |
+
- `push_to_hub_model_id`: None
|
1108 |
+
- `push_to_hub_organization`: None
|
1109 |
+
- `mp_parameters`:
|
1110 |
+
- `auto_find_batch_size`: False
|
1111 |
+
- `full_determinism`: False
|
1112 |
+
- `torchdynamo`: None
|
1113 |
+
- `ray_scope`: last
|
1114 |
+
- `ddp_timeout`: 1800
|
1115 |
+
- `torch_compile`: False
|
1116 |
+
- `torch_compile_backend`: None
|
1117 |
+
- `torch_compile_mode`: None
|
1118 |
+
- `dispatch_batches`: None
|
1119 |
+
- `split_batches`: None
|
1120 |
+
- `include_tokens_per_second`: False
|
1121 |
+
- `include_num_input_tokens_seen`: False
|
1122 |
+
- `neftune_noise_alpha`: None
|
1123 |
+
- `optim_target_modules`: None
|
1124 |
+
- `batch_eval_metrics`: False
|
1125 |
+
- `batch_sampler`: batch_sampler
|
1126 |
+
- `multi_dataset_batch_sampler`: proportional
|
1127 |
+
|
1128 |
+
</details>
|
1129 |
+
|
1130 |
+
### Training Logs
|
1131 |
+
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-16_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
1132 |
+
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
1133 |
+
| 0.5917 | 100 | 30.7503 | 30.6172 | 0.8117 | 0.7110 | 0.8179 | 0.7457 | 0.8244 | 0.7884 | 0.8252 | - | - | - | - | - | - | - |
|
1134 |
+
| 1.1834 | 200 | 30.4696 | 32.6422 | 0.7952 | 0.7198 | 0.8076 | 0.7491 | 0.8125 | 0.7813 | 0.8142 | - | - | - | - | - | - | - |
|
1135 |
+
| 1.7751 | 300 | 29.9233 | 31.5469 | 0.8152 | 0.7435 | 0.8250 | 0.7737 | 0.8302 | 0.8006 | 0.8305 | - | - | - | - | - | - | - |
|
1136 |
+
| 2.3669 | 400 | 29.0716 | 31.8088 | 0.8183 | 0.7405 | 0.8248 | 0.7758 | 0.8299 | 0.8057 | 0.8324 | - | - | - | - | - | - | - |
|
1137 |
+
| 2.9586 | 500 | 28.7971 | 32.6032 | 0.8176 | 0.7430 | 0.8241 | 0.7777 | 0.8289 | 0.8025 | 0.8316 | - | - | - | - | - | - | - |
|
1138 |
+
| 3.5503 | 600 | 27.4766 | 34.7911 | 0.8241 | 0.7400 | 0.8314 | 0.7730 | 0.8369 | 0.8061 | 0.8394 | - | - | - | - | - | - | - |
|
1139 |
+
| 4.1420 | 700 | 27.0639 | 35.7418 | 0.8294 | 0.7466 | 0.8354 | 0.7784 | 0.8389 | 0.8107 | 0.8409 | - | - | - | - | - | - | - |
|
1140 |
+
| 4.7337 | 800 | 26.5119 | 36.2014 | 0.8305 | 0.7425 | 0.8356 | 0.7806 | 0.8406 | 0.8152 | 0.8430 | - | - | - | - | - | - | - |
|
1141 |
+
| 5.0 | 845 | - | - | - | - | - | - | - | - | - | 0.8645 | 0.8072 | 0.8715 | 0.8425 | 0.8761 | 0.8585 | 0.8775 |
|
1142 |
+
|
1143 |
+
|
1144 |
+
### Framework Versions
|
1145 |
+
- Python: 3.10.12
|
1146 |
+
- Sentence Transformers: 3.0.0
|
1147 |
+
- Transformers: 4.41.1
|
1148 |
+
- PyTorch: 2.3.0+cu121
|
1149 |
+
- Accelerate: 0.30.1
|
1150 |
+
- Datasets: 2.19.1
|
1151 |
+
- Tokenizers: 0.19.1
|
1152 |
+
|
1153 |
+
## Citation
|
1154 |
+
|
1155 |
+
### BibTeX
|
1156 |
+
|
1157 |
+
#### Sentence Transformers
|
1158 |
+
```bibtex
|
1159 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1160 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1161 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1162 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1163 |
+
month = "11",
|
1164 |
+
year = "2019",
|
1165 |
+
publisher = "Association for Computational Linguistics",
|
1166 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1167 |
+
}
|
1168 |
+
```
|
1169 |
+
|
1170 |
+
#### MatryoshkaLoss
|
1171 |
+
```bibtex
|
1172 |
+
@misc{kusupati2024matryoshka,
|
1173 |
+
title={Matryoshka Representation Learning},
|
1174 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
1175 |
+
year={2024},
|
1176 |
+
eprint={2205.13147},
|
1177 |
+
archivePrefix={arXiv},
|
1178 |
+
primaryClass={cs.LG}
|
1179 |
+
}
|
1180 |
+
```
|
1181 |
+
|
1182 |
+
#### CoSENTLoss
|
1183 |
+
```bibtex
|
1184 |
+
@online{kexuefm-8847,
|
1185 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
1186 |
+
author={Su Jianlin},
|
1187 |
+
year={2022},
|
1188 |
+
month={Jan},
|
1189 |
+
url={https://kexue.fm/archives/8847},
|
1190 |
+
}
|
1191 |
+
```
|
1192 |
+
|
1193 |
+
<!--
|
1194 |
+
## Glossary
|
1195 |
+
|
1196 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1197 |
+
-->
|
1198 |
+
|
1199 |
+
<!--
|
1200 |
+
## Model Card Authors
|
1201 |
+
|
1202 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1203 |
+
-->
|
1204 |
+
|
1205 |
+
<!--
|
1206 |
+
## Model Card Contact
|
1207 |
+
|
1208 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1209 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.41.1",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0",
|
4 |
+
"transformers": "4.41.1",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b31e31b46df73827fafdccebb896150b658d9e668ba5cee3147a5767ab860e72
|
3 |
+
size 2239607176
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|