mradermacher commited on
Commit
494f6f8
1 Parent(s): f756015

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md CHANGED
@@ -1,6 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/shibing624/chinese-text-correction-1.5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: shibing624/chinese-text-correction-1.5b
3
+ datasets:
4
+ - shibing624/chinese_text_correction
5
+ language:
6
+ - zh
7
+ library_name: transformers
8
+ license: apache-2.0
9
+ quantized_by: mradermacher
10
+ tags:
11
+ - text-generation-inference
12
+ ---
13
+ ## About
14
+
15
  <!-- ### quantize_version: 2 -->
16
  <!-- ### output_tensor_quantised: 1 -->
17
  <!-- ### convert_type: hf -->
18
  <!-- ### vocab_type: -->
19
  <!-- ### tags: -->
20
  static quants of https://huggingface.co/shibing624/chinese-text-correction-1.5b
21
+
22
+ <!-- provided-files -->
23
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
24
+ ## Usage
25
+
26
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
27
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
28
+ more details, including on how to concatenate multi-part files.
29
+
30
+ ## Provided Quants
31
+
32
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
33
+
34
+ | Link | Type | Size/GB | Notes |
35
+ |:-----|:-----|--------:|:------|
36
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q2_K.gguf) | Q2_K | 0.8 | |
37
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q3_K_S.gguf) | Q3_K_S | 0.9 | |
38
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality |
39
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q3_K_L.gguf) | Q3_K_L | 1.0 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.IQ4_XS.gguf) | IQ4_XS | 1.0 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended |
42
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended |
43
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q5_K_S.gguf) | Q5_K_S | 1.2 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q5_K_M.gguf) | Q5_K_M | 1.2 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q6_K.gguf) | Q6_K | 1.4 | very good quality |
46
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality |
47
+ | [GGUF](https://huggingface.co/mradermacher/chinese-text-correction-1.5b-GGUF/resolve/main/chinese-text-correction-1.5b.f16.gguf) | f16 | 3.2 | 16 bpw, overkill |
48
+
49
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
50
+ types (lower is better):
51
+
52
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
53
+
54
+ And here are Artefact2's thoughts on the matter:
55
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
56
+
57
+ ## FAQ / Model Request
58
+
59
+ See https://huggingface.co/mradermacher/model_requests for some answers to
60
+ questions you might have and/or if you want some other model quantized.
61
+
62
+ ## Thanks
63
+
64
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
65
+ me use its servers and providing upgrades to my workstation to enable
66
+ this work in my free time.
67
+
68
+ <!-- end -->